Résumé
Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form: M1–R + M2–R′ → M1–R′ + M2–R where R and R′ can be, but are not limited to, an alkyl, aryl, alkynyl, allyl, halogen, or pseudohalogen group. The reaction is usually an irreversible process due to thermodynamic and kinetic reasons. Thermodynamics will favor the reaction based on the electronegativities of the metals and kinetics will favor the reaction if there are empty orbitals on both metals. There are different types of transmetalation including redox-transmetalation and redox-transmetalation/ligand exchange. During transmetalation the metal-carbon bond is activated, leading to the formation of new metal-carbon bonds. Transmetalation is commonly used in catalysis, synthesis of main group complexes, and synthesis of transition metal complexes. There are two main types of transmetalation, redox-transmetalation (RT) and redox-transmetalation/ligand-exchange (RTLE). Below, M1 is usually a 4d or 5d transition metal and M2 is usually a main group or 3d transition metal. By looking at the electronegativities of the metals and ligands, one can predict whether the RT or RTLE reaction will proceed and what products the reaction will yield. For example, one can predict that the addition of 3 HgPh2 to 2 Al will yield 3 Hg and 2 AlPh3 because Hg is a more electronegative element than Al. M1n+–R + M2 → M1 + M2n+–R. In redox-transmetalation a ligand is transferred from one metal to the other through an intermolecular mechanism. During the reaction one of the metal centers is oxidized and the other is reduced. The electronegativities of the metals and ligands is what causes the reaction to go forward. If M1 is more electronegative than M2, it is thermodynamically favorable for the R group to coordinate to the less electronegative M2. M1–R + M2–X → M1–X + M2–R. In redox-transmetalation/ligand exchange the ligands of two metal complexes switch places with each other, bonding with the other metal center.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CH-422: Catalyst design for synthesis
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
CH-335: Asymmetric synthesis and retrosynthesis
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
Séances de cours associées (20)
Synthèse des molécules conjuguées T
Couvre la synthèse des molécules conjuguées en T, les réactions de couplage croisé, la polymérisation et le réglage de l'écart de bande.
Matériaux semi-conducteurs organiques: Structure électronique et applications
Explore la structure électronique et les applications des matériaux semi-conducteurs organiques, couvrant le transport de charge, la préparation des appareils et les sujets avancés.
Electronique organique : synthèse de molécules conjuguées
Couvre la synthèse de molécules conjuguées pour l'électronique organique et l'accord des intervalles de bande grâce à diverses réactions.
Afficher plus
Publications associées (70)