In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields.
The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations (see classical field theory for background).
In the Schrödinger picture, the wave function or field is the solution to the Schrödinger equation;
one of the postulates of quantum mechanics. All relativistic wave equations can be constructed by specifying various forms of the Hamiltonian operator Ĥ describing the quantum system. Alternatively, Feynman's path integral formulation uses a Lagrangian rather than a Hamiltonian operator.
More generally – the modern formalism behind relativistic wave equations is Lorentz group theory, wherein the spin of the particle has a correspondence with the representations of the Lorentz group.
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics. The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics. The Schrödinger equation and the Heisenberg picture resemble the classical equations of motion in the limit of large quantum numbers and as the reduced Planck constant ħ, the quantum of action, tends to zero. This is the correspondence principle.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
En physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
La Mer de Dirac est un concept métaphorique représentant le vide quantique, proposé par le physicien britannique Paul Dirac (1902-1984). Paul Dirac suggéra que l'on considère le vide quantique non comme un milieu désertique, mais comme une mer d'électrons de profondeur infinie où chaque électron occuperait un niveau d'énergie propre, s'étalant sur une échelle allant de l'infini négatif jusqu'à une certaine valeur maximale.
In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. This article uses the (+ − − −) metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. indicates the speed of light in vacuum. is the flat spacetime metric of SR.
Explore les modes de Fourier dans la théorie quantique des champs, en mettant l'accent sur les variables qui se transforment bien sous les traductions et la normalisation des états.
Explore la normalisation relativiste des états dans la théorie quantique des champs.
Couvre les fondamentaux des systèmes d'équations linéaires, y compris les définitions, les représentations et les méthodes de solution.
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...
Ecole Polytechnique2024
, ,
We determine the contribution of long-range pion interactions to the X(3872) dynamics, assuming it is a loosely bound D-0(D) over bar*(0) molecule. Our result is based on the distorted wave Born approximation in non-relativistic quantum mechanics. Despite ...
Amsterdam2023
Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...