Résumé
The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with negative energy. It was first postulated by the British physicist Paul Dirac in 1930 to explain the anomalous negative-energy quantum states predicted by the Dirac equation for relativistic electrons (electrons traveling near the speed of light). The positron, the antimatter counterpart of the electron, was originally conceived of as a hole in the Dirac sea, before its experimental discovery in 1932. In hole theory, the solutions with negative time evolution factors are reinterpreted as representing the positron, discovered by Carl Anderson. The interpretation of this result requires a Dirac sea, showing that the Dirac equation is not merely a combination of special relativity and quantum mechanics, but it also implies that the number of particles cannot be conserved. Dirac sea theory has been displaced by quantum field theory, though they are mathematically compatible. Similar ideas on holes in crystals had been developed by Soviet physicist Yakov Frenkel in 1926, but there is no indication the concept was discussed with Dirac when the two met in a Soviet physics congress in the summer of 1928. The origins of the Dirac sea lie in the energy spectrum of the Dirac equation, an extension of the Schrödinger equation consistent with special relativity, an equation that Dirac had formulated in 1928. Although this equation was extremely successful in describing electron dynamics, it possesses a rather peculiar feature: for each quantum state possessing a positive energy E, there is a corresponding state with energy -E. This is not a big difficulty when an isolated electron is considered, because its energy is conserved and negative-energy electrons may be left out. However, difficulties arise when effects of the electromagnetic field are considered, because a positive-energy electron would be able to shed energy by continuously emitting photons, a process that could continue without limit as the electron descends into ever lower energy states.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-426: Quantum physics IV
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
Afficher plus
Séances de cours associées (35)
L'équation de Dirac
Explore le développement et les implications de l'équation de Dirac, y compris ses solutions, le concept de la mer de Dirac et la découverte de l'anti-électron.
Calcul Quantique Linéaire en Notation Dirac
Couvre l'algèbre linéaire en notation Dirac, en mettant l'accent sur le produit scalaire et le produit de densité dans les calculs quantiques.
Introduction à la mécanique quantique
Introduit la mécanique quantique, couvrant la matrice S, les amplitudes de diffusion et le théorème optique.
Afficher plus
Publications associées (32)
Concepts associés (16)
Polarisation du vide
Dans la théorie quantique des champs et plus précisément en électrodynamique quantique, la polarisation du vide est un processus où un champ électromagnétique modifie la répartition « spatiale » de paires électron virtuel-positron, lesquelles paires à leur tour modifient la répartition des charges et des courants initialement produits par le champ électromagnétique. Ses effets ont été expérimentalement observés en 1997 par l'accélérateur de particules japonais TRISTAN du centre de recherche KEK.
Energy–momentum relation
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Relativistic wave equations
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Afficher plus