Le paradoxe de Goodman, ou paradoxe du « vleu-bert », ou encore paradoxe de l'émeraude « vleue » est énoncé par Nelson Goodman en 1946, puis repris en 1955 dans son ouvrage . Ce paradoxe est un approfondissement du paradoxe de Hempel. Il a beaucoup contribué à alimenter le débat autour de l'induction. Il a notamment été étudié par Yael Cohen, Alfred Ayer, Nathan Stemmer, Lin Chao-Tien et dans son livre Knowing and guessing. Goodman inventa l'adjectif « vleu » (« grue » en anglais) signifiant: Par symétrie, on peut considérer l'adjectif « bert » (« bleen » en anglais) signifiant « observé avant une certaine date t et bleu ou pas observé avant t et vert ». Goodman avance alors que si l'observation d'une émeraude verte étaye l'induction logique que « toutes les émeraudes sont vertes », elle étaye de la même manière l'affirmation que « toutes les émeraudes sont vleues ». Il est donc paradoxal que nous soyons prompts à accepter la première affirmation, et non la seconde. Il est malheureusement difficile de trouver un exposé suffisamment clair et précis de la question dans la littérature. De nombreux auteurs rapportent ce paradoxe en choisissant arbitrairement une date future pour t. Par exemple, Toutefois l'emploi d'une date prédéfinie (et non d'une durée) a son importance pour le physicien. Celui-ci peut alors argumenter que la probabilité d'un événement à une date prédéfinie est nulle. Par conséquent, la possibilité d'existence d'un objet vleu devient nulle également. Il faut alors plutôt formuler par exemple Pour la physique, cette dernière définition est radicalement différente de la définition initiale. Par ailleurs, le sens de « toutes les émeraudes sont vertes » est ambigu car cette phrase a deux interprétations : « toutes les émeraudes sont vertes maintenant » ; « toutes les émeraudes sont vertes de tout temps ». Il est crucial de remarquer que l'observation de la totalité des émeraudes ne permet d'induire aucune de ces deux possibilités. Pourtant on induira aisément que « toutes les émeraudes sont vertes ».