Résumé
In a biological membrane, the reversal potential is the membrane potential at which the direction of ionic current reverses. At the reversal potential, there is no net flow of ions from one side of the membrane to the other. For channels that are permeable to only a single type of ions, the reversal potential is identical to the equilibrium potential of the ion. The equilibrium potential for an ion is the membrane potential at which there is no net movement of the ion. The flow of any inorganic ion, such as Na+ or K+, through an ion channel (since membranes are normally impermeable to ions) is driven by the electrochemical gradient for that ion. This gradient consists of two parts, the difference in the concentration of that ion across the membrane, and the voltage gradient. When these two influences balance each other, the electrochemical gradient for the ion is zero and there is no net flow of the ion through the channel; this also translates to no current across the membrane. The voltage gradient at which this equilibrium is reached is the equilibrium potential for the ion and it can be calculated from the Nernst equation. We can consider as an example a positively charged ion, such as K+, and a negatively charged membrane, as it is commonly the case in most organisms. The membrane voltage opposes the flow of the potassium ions out of the cell and the ions can leave the interior of the cell only if they have sufficient thermal energy to overcome the energy barrier produced by the negative membrane voltage. However, this biasing effect can be overcome by an opposing concentration gradient if the interior concentration is high enough which favours the potassium ions leaving the cell. An important concept related to the equilibrium potential is the driving force. Driving force is simply defined as the difference between the actual membrane potential and an ion's equilibrium potential where refers to the equilibrium potential for a specific ion.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)

Chemical and electrochemical promotion of supported rhodium catalyst

Olena Baranova

The chemical and electrochemical promotion of highly dispersed nanofilm Rh catalysts (dispersion: about 10 %, film thickness: 40 nm) has been investigated for the first time. To this end Rh metal was sputter-deposited, either on a purely ionic conductor (8 % Y2O3-stabilized ZrO2) or on a mixed ionic-electronic conductor (TiO2), the latter being a highly dispersed layer of TiO2 (4 µm) deposited on YSZ. These catalysts are designated as Rh/YSZ and Rh/TiO2/YSZ, respectively. It was established analytically that both in the Rh/YSZ and in the Rh/TiO2/YSZ system, the catalyst films have a nanoparticle-size grain structure. The Rh supported on titania is rather porous, exhibiting a higher dispersion and surface area than Rh on YSZ. Both after reduction (H2, T=400 °C) and after oxidation (O2, T=400 °C), Rh supported on TiO2 was found to be in a more highly reduced state than Rh on YSZ. After reducing treatment, the Rh/TiO2/YSZ samples contain a larger amount of weakly bonded oxygen, which can be attributed to oxygen "backspillover" from the TiO2. A major feature of this research was the electrochemical characterization of the oxygen/Rh/solid electrolyte three-phase boundary by steady-state polarization measurements and by impedance spectroscopy. These are powerful techniques for extracting experimental trends and details that are useful for an understanding of the electrochemical promotion principles. It was shown that the exchange current densities at the Rh/solid electrolyte interface are lower on account of the TiO2 layer. The exchange current densities are more than twice lower at Rh/TiO2(4 µm)/YSZ than at Rh/YSZ, demonstrating that the former interface is much more polarizable. The mechanism of oxygen exchange occurring close to equilibrium (O2/O2- couple) was investigated for the first time at Rh catalyst electrodes interfaced with solid electrolyte. The processes of cathodic oxygen reduction and anodic oxygen evolution are not symmetric, but they are similar in the two systems, Rh/YSZ and Rh/TiO2(4 µm)/YSZ. The cathodic process consists of three steps: dissociative adsorption of oxygen at the gas-exposed Rh surface, atomic oxygen diffusion to the electrochemical reaction sites (ERS), and a two-electron transfer to this oxygen on the ERS. The cathodic process is limited by interfacial diffusion of oxygen atoms from the gas-exposed metal surface to the ERS. The anodic process includes two steps: two-electron transfer reaction, which is the rate-determining step, and oxygen desorption to the gas phase. With data obtained from impedance spectroscopy at the equilibrium potential, it was possible to confirm the reaction scheme proposed. It was demonstrated that Rh nanofilm catalysts interfaced with YSZ or TiO2/YSZ can be electrochemically promoted for the reaction of ethylene oxidation. Small anodic currents cause periodic oscillations in catalytic rate and potential of the Rh/YSZ catalyst, while at Rh/TiO2/YSZ they give rise to a stable and reversible rate enhancement by up to a factor 80. The increase in ethylene oxidation rate is up to 2000 times larger than the electrochemical rate, I/2F, of O2- oxidation. The pronounced electrochemical promotion behavior that has been observed is due to the anodically controlled migration of O2- species from the electrolyte to the Rh/gas interface. At the Rh surface, these species destabilize the formation of rhodium surface oxide (Rh2O3). The existence of backspillover oxygen species has been confirmed by impedance measurements under positive applied potential. Another significant result for heterogeneous catalysis is the finding that thick as well as thin films of Rh/TiO2/YSZ catalyst are open to chemical promotion of ethylene oxidation and partial methane oxidation, ie, they offer a higher catalytic activity and stability than the Rh/YSZ catalysts. The modification of catalytic activity observed for Rh/TiO2/YSZ was attributed to either a "long-range" electronic-type SMSI mechanism or to a self-driven electrochemical promotion mechanism. In both cases, the ultimate cause of promotion are different work functions of catalyst and support. Equilibration of the work functions of two solids in contact induces surface charging, a migration of O2- ions to the catalyst/gas interface, and a weakening of the Rh-O chemisorptive bonds. It facilitates reduction of oxidized surface sites. Another important achievement of the present work was that of exploring and confirming the possibilities of current-assisted activation of Rh/TiO2/YSZ catalysts. In partial methane oxidation using close to stoichiometric gas compositions (CH4 : O2 = 2 : 1) at 550 °C, the inactive (oxidized) Rh/TiO2/YSZ catalyst was successfully activated by applied currents, either positive or negative. This phenomenon is an example of "permanent" electrochemical promotion furnishing a permanent rate enhancement ratio of γ = 11. The activation by negative currents is explained in terms of an electrochemical reduction of rhodium surface oxide, while the activation by positive currents can be explained by the mechanism of electrochemical promotion.
EPFL2005
Concepts associés (8)
Récepteur ionotrope
Un récepteur ionotrope sensible à un ligand est une protéine membranaire qui ouvre un canal ionique grâce à la liaison d'un messager chimique ou neurotransmetteur. Ils sont généralement sélectifs à un type d'ions tels que Na+, K+, Ca2+ ou Cl−. Ils sont localisés au niveau des synapses, où ils convertissent de manière extrêmement rapide un message pré-synaptique chimique (neurotransmetteur) en message post-synaptique électrique. Les récepteurs ionotropes s'opposent aux récepteurs métabotropes, qui eux ne possèdent pas de canaux ioniques.
Potentiel d'inversion
Le potentiel d'inversion pour un canal ionique, ou plus généralement pour un courant ionique, est la valeur du potentiel de membrane pour laquelle le flux ionique est nul. Il s'agit en fait de la valeur de potentiel de membrane à laquelle une espèce ionique est en équilibre électro-osmotique. C’est-à-dire que pour ce potentiel de membrane, la force électrique due à la différence de potentiel de part et d'autre de la membrane et la force chimique due à la différence de concentration (ou force osmotique) sont égales et de sens opposés.
Glutamate receptor
Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter.
Afficher plus
MOOCs associés (8)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Afficher plus