Concepts associés (16)
Simply typed lambda calculus
The simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term simple type is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers (System T) or even full recursion (like PCF).
First-class function
In computer science, a programming language is said to have first-class functions if it treats functions as first-class citizens. This means the language supports passing functions as arguments to other functions, returning them as the values from other functions, and assigning them to variables or storing them in data structures. Some programming language theorists require support for anonymous functions (function literals) as well.
Partial application
In computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
Type dépendant
En Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Type constructor
In the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors.
Fonction anonyme
En programmation informatique, une fonction anonyme, aussi appelée lambda expression ou fonction lambda est une fonction n'ayant pas de nom. Les fonctions anonymes existent dans certains langages de programmation comme Python, JavaScript, OCaml ou C++. Certains langages, comme le C et Pascal (tout au moins les versions standards de ces langages), ne permettent pas d'écrire des fonctions anonymes. Parce que ces fonctions n'ont pas de nom, à l'endroit où l'on voudrait mettre leur nom, on trouve directement les instructions définissant la fonction introduites par une syntaxe particulière.
Scala (langage)
Scala est un langage de programmation multi-paradigme conçu à l'École polytechnique fédérale de Lausanne (EPFL) pour exprimer les modèles de programmation courants dans une forme concise et élégante. Son nom vient de l'anglais Scalable language qui signifie à peu près « langage adaptable » ou « langage qui peut être mis à l'échelle ». Il peut en effet être vu comme un métalangage. Scala intègre les paradigmes de programmation orientée objet et de programmation fonctionnelle, avec un typage statique.
Kind (type theory)
In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier.
Typed lambda calculus
A typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Covariance and contravariance (computer science)
Many programming language type systems support subtyping. For instance, if the type is a subtype of , then an expression of type should be substitutable wherever an expression of type is used. Variance is how subtyping between more complex types relates to subtyping between their components. For example, how should a list of s relate to a list of s? Or how should a function that returns relate to a function that returns ? Depending on the variance of the type constructor, the subtyping relation of the simple types may be either preserved, reversed, or ignored for the respective complex types.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.