Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore l'IA très bénéfique, en alignant les objectifs de l'IA avec les préférences et les comportements humains, en illustrant les complexités à travers des exemples comme la classification d'image et la récupération du café.
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Explore l'importance de la gouvernance mondiale dans l'intelligence artificielle, en mettant l'accent sur les pratiques éthiques, les questions de partialité et la confiance dans les technologies de l'intelligence artificielle.