Théorie topologique des graphesEn mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.
Pál TuránPál Turán, né le à Budapest et décédé le , est un mathématicien hongrois connu comme l'auteur du théorème de Turán. Son nombre d'Erdős est 1. Il était l'époux de Vera Sós Turán, mathématicienne elle aussi. Théorème d'Erdős-Kac Histoire de la fonction zêta de Riemann Université Loránd Eötvös Prix Kossuth Théorème de Szemerédi Conjecture d'Erdős-Turán sur les bases additives Inégalité d'Erdős-Turán Graphe de Turán Catégorie:Naissance à Budapest Catégorie:Naissance en août 1910 Catégorie:Naissance dans le roya
Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Test de planaritéEn théorie des graphes, le problème du test de planarité est le problème algorithmique qui consiste à tester si un graphe donné est un graphe planaire (c'est-à-dire s'il peut être dessiné dans le plan sans intersection d'arêtes). Il s'agit d'un problème bien étudié en informatique pour lequel de nombreux algorithmes pratiques ont été donnés, souvent en décrivant de nouvelles structures de données. La plupart de ces méthodes fonctionnent en temps O(n) (temps linéaire), où n est le nombre d'arêtes (ou de sommets) du graphe, ce qui est asymptotiquement optimal.