G-banding, G banding or Giemsa banding is a technique used in cytogenetics to produce a visible karyotype by staining condensed chromosomes. It is the most common chromosome banding method. It is useful for identifying genetic diseases (mainly chromosomal abnormalities) through the photographic representation of the entire chromosome complement.
The metaphase chromosomes are treated with trypsin (to partially digest the chromosome) and stained with Giemsa stain. Heterochromatic regions, which tend to be rich with adenine and thymine (AT-rich) DNA and relatively gene-poor, stain more darkly in G-banding. In contrast, less condensed chromatin (Euchromatin)—which tends to be rich with guanine and cytosine (GC-rich) and more transcriptionally active—incorporates less Giemsa stain, and these regions appear as light bands in G-banding. The pattern of bands are numbered on each arm of the chromosome from the centromere to the telomere. This numbering system allows any band on the chromosome to be identified and described precisely. The reverse of G‐bands is obtained in R‐banding. Staining with Giemsa confers a purple color to chromosomes, but micrographs are often converted to grayscale to facilitate data presentation and make comparisons of results from different laboratories.
The less condensed the chromosomes are, the more bands appear when G-banding. This means that the different chromosomes are more distinct in prophase than they are in metaphase.
File:Human Chromosomes (crop).jpg|Micrograph of human male chromosomes using Giemsa staining for G banding.
File:NHGRI human male karyotype.png|Micrograph of human male chromosomes using Giemsa stain, followed by sorting and [[grayscale|grayscaling]].
It is difficult to identify and group chromosomes based on simple staining because the uniform colour of the structures makes it difficult to differentiate between the different chromosomes. Therefore, techniques like G‐banding were developed that made "bands" appear on the chromosomes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
NOTOC Le giemsa est un colorant spécifique des chromosomes, constitué d'un mélange de deux colorants (bleu de méthylène et éosine) rose violacé. Le giemsa permet notamment de mettre en évidence les territoires chromosomiques. (1867 – 1948) était à la fois chimiste et pharmacien. C'est dans les années 1900 qu'il développe la technique de coloration qui fut utile pour identifier dans les frottis sanguins le parasite de la malaria, Plasmodium falciparum.
An inversion is a chromosome rearrangement in which a segment of a chromosome becomes inverted within its original position. An inversion occurs when a chromosome undergoes a two breaks within the chromosomal arm, and the segment between the two breaks inserts itself in the opposite direction in the same chromosome arm. The breakpoints of inversions often happen in regions of repetitive nucleotides, and the regions may be reused in other inversions. Chromosomal segments in inversions can be as small as 100 kilobases or as large as 100 megabases.
Le chromosome 13 est l'un des 24 chromosomes humains. C'est l'un des 22 autosomes et l'un des 5 chromosomes acrocentriques. Nombre de paires de base : Nombre de gènes : 399 Nombre de gènes connus : 318 Nombre de pseudo gènes : 213 Nombre de variations des nucléotides (S.N.P ou single nucleotide polymorphisme) : Trisomie 13 responsable du syndrome de Patau Tout comme les autres chromosomes acrocentriques, le chromosome 13 peut être impliqué dans des translocations robertsoniennes.
Explore la structure de l'ADN, les interactions histoniques, la fonction polymérase, l'organisation des nucléosomes, le compactage de la chromatine, les phases du cycle cellulaire, l'analyse FISH et la structure des télomères.
Difficulties to replicate telomeres - the ends of our chromosomes - can cause telomere shortening andgenome instability. These difficulties are due to the repetitive DNA sequence and distinct structures at telomeresthat challenge the semi-conservative DNA ...
Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are therefore crucial for genome stability. In spite of the heter ...
EPFL2023
, ,
Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localizatio ...