Résumé
Le cryptosystème d'ElGamal, ou chiffrement El Gamal (ou encore système d'El Gamal) est un protocole de cryptographie asymétrique inventé par Taher Elgamal en 1984 et construit à partir du problème du logarithme discret. Ce protocole est utilisé par le logiciel libre GNU Privacy Guard dont les versions récentes implémentent jusqu'à sa version sur les courbes elliptiques. Contrairement au chiffrement RSA, il n’a jamais été sous la protection d’un brevet. L’article fondateur par Taher Elgamal présente un protocole de chiffrement, mais aussi une signature numérique, qui malgré leurs similarités (ils sont tous deux construit sur le problème du logarithme discret) ne sont pas à confondre. Cet article traite uniquement du protocole de chiffrement. vignette|300px|alt=ElGamal vs Diffie Hellman|Liens entre le protocole de Diffie-Hellman associé à un masque jetable (en noir) et le chiffrement El-Gamal (en bleu). L'algorithme est décrit pour un groupe cyclique fini au sein duquel le problème de décision de Diffie-Hellman (DDH) est difficile. Des informations plus précises sont données dans la section Résistance aux attaques CPA. On peut remarquer que DDH est une hypothèse de travail plus forte que celle du logarithme discret, puisqu’elle tient si jamais le problème du logarithme discret est difficile. Il existe par ailleurs des groupes où le problème DDH est facile, mais où on n'a pas d'algorithme efficace pour résoudre le logarithme discret. Comme il s'agit d'un schéma de chiffrement asymétrique, le cryptosystème est composé de trois algorithmes (probabilistes) : GenClefs, Chiffrer et Déchiffrer. Pour l'illustration, on va considérer que Bob veut envoyer un message à Alice. Mais ce message contient des informations sensibles, Bob ne veut donc pas qu'il soit compréhensible par une autre personne qu'Alice. Ainsi Bob va chiffrer son message. Comme les schémas de chiffrement asymétrique sont en règle générale plus lents que leurs analogues symétriques, le chiffrement ElGamal est souvent utilisé en pratique dans le cadre d'un chiffrement hybride, comme pour sa spécification PGP.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.