In quantum information theory, quantum mutual information, or von Neumann mutual information, after John von Neumann, is a measure of correlation between subsystems of quantum state. It is the quantum mechanical analog of Shannon mutual information. For simplicity, it will be assumed that all objects in the article are finite-dimensional. The definition of quantum mutual entropy is motivated by the classical case. For a probability distribution of two variables p(x, y), the two marginal distributions are The classical mutual information I(X:Y) is defined by where S(q) denotes the Shannon entropy of the probability distribution q. One can calculate directly So the mutual information is Where the logarithm is taken in basis 2 to obtain the mutual information in bits. But this is precisely the relative entropy between p(x, y) and p(x)p(y). In other words, if we assume the two variables x and y to be uncorrelated, mutual information is the discrepancy in uncertainty resulting from this (possibly erroneous) assumption. It follows from the property of relative entropy that I(X:Y) ≥ 0 and equality holds if and only if p(x, y) = p(x)p(y). The quantum mechanical counterpart of classical probability distributions are modeled with density matrices. Consider a quantum system that can be divided into two parts, A and B, such that independent measurements can be made on either part. The state space of the entire quantum system is then the tensor product of the spaces for the two parts. Let ρAB be a density matrix acting on states in HAB. The von Neumann entropy of a density matrix S(ρ), is the quantum mechanical analogy of the Shannon entropy. For a probability distribution p(x,y), the marginal distributions are obtained by integrating away the variables x or y. The corresponding operation for density matrices is the partial trace. So one can assign to ρ a state on the subsystem A by where TrB is partial trace with respect to system B. This is the reduced state of ρAB on system A.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.