Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp−. This colorless liquid has a strong and unpleasant odor. At room temperature, this cyclic diene dimerizes over the course of hours to give dicyclopentadiene via a Diels–Alder reaction. This dimer can be restored by heating to give the monomer. The compound is mainly used for the production of cyclopentene and its derivatives. It is popularly used as a precursor to the cyclopentadienyl anion (Cp−), an important ligand in cyclopentadienyl complexes in organometallic chemistry. Cyclopentadiene production is usually not distinguished from dicyclopentadiene since they interconvert. They are obtained from coal tar (about 10–20 g/tonne) and by steam cracking of naphtha (about 14 kg/tonne). To obtain cyclopentadiene monomer, commercial dicyclopentadiene is cracked by heating to around 180 °C. The monomer is collected by distillation, and used soon thereafter. It advisable to use some form of fractionating column when doing this, to remove refluxing uncracked dimer. The hydrogen atoms in cyclopentadiene undergo rapid [1,5]-sigmatropic shifts. The hydride shift is however sufficiently slow at 0 °C to allow alkylated derivatives to be manipulated selectively. Even more fluxional are the derivatives C5H5E(CH3)3 (E = Si, Ge, Sn), wherein the heavier element migrates from carbon to carbon with a low activation barrier. Cyclopentadiene is a highly reactive diene in the Diels–Alder reaction because minimal distortion of the diene is required to achieve the envelope geometry of the transition state compared to other dienes. Famously, cyclopentadiene dimerizes. The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20 °C. Cyclopentadienyl anion The compound is unusually acidic (pKa = 16) for a hydrocarbon, a fact explained by the high stability of the aromatic cyclopentadienyl anion, C5H5−. Deprotonation can be achieved with a variety of bases, typically sodium hydride, sodium metal, and butyl lithium.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (5)
Réactions asymétriques en chimie organique
Déplacez-vous dans des réactions asymétriques en chimie organique, en mettant en évidence les mécanismes, les catalyseurs et la sélectivité.
Activation des acides Lewis et Brønsted
Explore Lewis et les acides Brønsted l'activation des carbonyls et des imines, en mettant l'accent sur les additions conjuguées et les cycloadditions, avec des exemples de réactions pionnières et récentes/classiques.
ChemDraw: Écrire des molécules et des réactions
Couvre l'utilisation du logiciel ChemDraw pour écrire des molécules et des réactions, y compris des exercices pratiques sur le butanol.
Afficher plus
Publications associées (10)

Flash light synthesis of noble metal nanoparticles for electrochemical applications: silver, gold, and their alloys

Hubert Girault, Victor Costa Bassetto, Carlos Manuel De Melo Pereira

The synthesis of noble metal nanoparticles (i.e., silver and gold) for electrochemical applications has been widely studied using mainly wet synthesis chemical methods or electrochemical deposition methods. In this work, we propose a single-step flash phot ...
SPRINGER2020

Mechanistic study of the photo‐generation of hydrogen by decamethylruthenocene

Hubert Girault, Pekka Eero Peljo, Manuel Alejandro Méndez Agudelo, Heron Vrubel, Micheal Diarmaid Scanlon, Laurent Alexis Clément Vannay, Sunny Isaïe Maye, Lucie Josette Renée Rivier

Hydrogen evolution by decamethylruthenocene (Cp*2RuII) was studied in detail highlighting that metallocenes are capable of photo‐reducing hydrogen without the need of an additional sensitizer. Electrochemical, gas chromatographic and spectroscopic (UV/vis, ...
2019

How to increase the selectivity of Pd-based catalyst in alkynol hydrogenation: Effect of second metal

Lioubov Kiwi, Duncan Alexander, Fernando Cardenas Lizana, Artur Yarulin

The development of selective Pd-based catalyst for semi-hydrogenation of dehydroisophytol (DIP), a C20-alkynol, is reported. A series of unsupported mono- (Pd) and bimetallic (Pd-M) nanoparticles (NPs) with Pd/M molar ratios of 1.5 - 5.0 (M = Ag or Cu) wer ...
Elsevier2014
Afficher plus
Concepts associés (17)
Cyclopentadienyl complex
A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups (C5H5−, abbreviated as Cp−). Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring. Biscyclopentadienyl complexes are called metallocenes. A famous example of this type of complex is ferrocene (FeCp2), which has many analogues for other metals, such as chromocene (CrCp2), cobaltocene (CoCp2), and nickelocene (NiCp2).
Règle des 18 électrons
La règle des 18 électrons est une règle empirique chimique utilisée principalement pour prédire et rationaliser les formules des complexes de métaux de transition stables, en particulier les composés organométalliques. La règle est basée sur le fait que les orbitales de valence dans la configuration électronique des métaux de transition se composent de cinq orbitales ( n −1)d , une orbitale n s et trois orbitales n p , où n est le nombre quantique principal.
Hapticité
Le terme hapticité est utilisé pour décrire la coordination d'un groupe contigu d'atomes d'un ligand à un atome central. L'hapticité d'un ligand est désigné par la lettre grecque η. En général cette notation est complétée par le nombre d'atomes de ligand liés à l'atome central, placé en exposant. Cette notation n'est en revanche pas utilisée quand il n'y a qu'un atome coordiné (la notation κ est alors préférée).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.