Concept

Base d'or

Résumé
La base d'or ou base φ est, en mathématiques, le système de numération utilisant le nombre d'or, à savoir comme base. Ce système de numération en base non entière est également désigné plus rarement comme « développement phinaire » (car le symbole pour le nombre d'or est la lettre grecque « phi »), mais aussi « système de numération de Bergman ». Tout nombre réel positif possède une représentation standard en base φ où seuls les chiffres 0 et 1 sont utilisés, et où la suite « 11 » est évitée. Une représentation non standard en base φ avec ces deux chiffres (ou avec d'autres chiffres) peut toujours être réécrite en forme standard, en utilisant les propriétés algébriques du nombre φ — c'est-à-dire que φ + 1 = φ. Par exemple 11 = 100. Malgré l'usage d'une base irrationnelle, tous les entiers naturels possèdent une représentation unique en développement fini dans la base φ. Les réels positifs qui possèdent une représentation finie (avec une quantité finie de 0 et 1) dans la base phinaire sont les entiers de Q() positifs. Les autres nombres positifs possèdent des représentations standards infinies en base φ, les nombres rationnels positifs ayant des représentations récurrentes. Ces représentations sont uniques, excepté celles des nombres qui ont un développement fini ainsi qu'un développement non fini (de la même manière qu'en base dix : 2,2 = 2,199999... ou 1 = 0,999...). Cette base est présentée en 1957 par George Bergman. À cette époque, George Bergman entrevoit peu d'utilisations pratiques de son système mais pense ouvrir un nouveau champ d'investigation en théorie des nombres mais depuis, l'étude de la base d'or a produit des fruits en informatique, notamment pour la conception de convertisseurs analogique-numérique et de processeurs tolérants au bruit. Par la suite, par analogie avec l'écriture décimale positionnelle, on notera Si, pour tout i inférieur ou égal à n, a appartient à {0, 1} et (a, a) est différent de (1, 1), l'écriture sera appelé écriture phinaire standard ou minimale, ou la plus simple.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.