Résumé
In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating object, such as a shaft, propeller, leadscrew, or gear. As the speed of rotation approaches the object's natural frequency, the object begins to resonate, which dramatically increases system vibration. The resulting resonance occurs regardless of orientation. When the rotational speed is equal to the numerical value of the natural vibration, then that speed is referred to as critical speed. All rotating shafts, even in the absence of external load, will deflect during rotation. The unbalanced mass of the rotating object causes deflection that will create resonant vibration at certain speeds, known as the critical speeds. The magnitude of deflection depends upon the following: Stiffness of the shaft and its support Total mass of shaft and attached parts Unbalance of the mass with respect to the axis of rotation The amount of damping in the system In general, it is necessary to calculate the critical speed of a rotating shaft, such as a fan shaft, in order to avoid issues with noise and vibration. Like vibrating strings and other elastic structures, shafts and beams can vibrate in different mode shapes, with corresponding natural frequencies. The first vibrational mode corresponds to the lowest natural frequency. Higher modes of vibration correspond to higher natural frequencies. Often when considering rotating shafts, only the first natural frequency is needed. There are two main methods used to calculate critical speed—the Rayleigh–Ritz method and Dunkerley's method. Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation. The Rayleigh–Ritz method is discussed here. For a shaft that is divided into n segments, the first natural frequency for a given beam, in rad/s, can be approximated as: where g is the acceleration of gravity, and the are the weights of each segment, and the are the static deflections (under gravitational loading only) of the center of each segment.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.