Résumé
En logique, une logique de la prouvabilité est une logique modale où l'opérateur modal se lit « il est prouvable que ». Il existe plusieurs logiques de la prouvabilité , par exemple, la logique GL (pour Gödel-Löb) obtenue en ajoutant un axiome qui correspond au théorème de Löb à la logique modale K4. Tout a commencé lorsque Gödel, en 1933, propose une traduction de la logique intuitionniste en logique modale (la logique modale utilisée s'appelle désormais la logique S4).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (3)
Anonymité en ligne : Techniques et faiblesses
Explore les techniques et les faiblesses d'anonymat en ligne, y compris le contournement du géoblocage et l'évitement du suivi.
Calcul séquentiel: bases et applications
Couvre les bases et les applications du calcul séquentiel en logique et théorie des preuves, y compris l'élimination des coupes et l'analyse des preuves pratiques.
Afficher plus
Concepts associés (5)
Sémantique de Kripke
En logique mathématique, la sémantique de Kripke est une sémantique formelle utilisée pour les logiques non-classiques comme la logique intuitionniste et certaines logiques modales. Elle a été développée à la fin des années 1950 et début des années 1960 par Saul Kripke et est fondée sur la théorie des mondes possibles. Un cadre de Kripke est un couple (W, R), où W est un ensemble de mondes appelés parfois mondes possibles et où R est une relation binaire sur W. L'ensemble W s'appelle parfois l'univers des mondes possibles.
Logique modale
En logique mathématique, une logique modale est un type de logique formelle qui étend la logique propositionnelle, la logique du premier ordre ou la logique d'ordre supérieur avec des modalités. Une modalité spécifie des . Par exemple, une proposition comme « il pleut » peut être précédée d'une modalité : Il est nécessaire qu'''il pleuve ; Demain, il pleut ; Christophe Colomb croit quil pleut ; Il est démontré qu'''il pleut ; Il est obligatoire quil pleuve.
Théorèmes d'incomplétude de Gödel
Les théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Afficher plus