A distributed transaction is a database transaction in which two or more network hosts are involved. Usually, hosts provide transactional resources, while the transaction manager is responsible for creating and managing a global transaction that encompasses all operations against such resources. Distributed transactions, as any other transactions, must have all four ACID (atomicity, consistency, isolation, durability) properties, where atomicity guarantees all-or-nothing outcomes for the unit of work (operations bundle). Open Group, a vendor consortium, proposed the X/Open Distributed Transaction Processing (DTP) Model (X/Open XA), which became a de facto standard for behavior of transaction model components. Databases are common transactional resources and, often, transactions span a couple of such databases. In this case, a distributed transaction can be seen as a database transaction that must be synchronized (or provide ACID properties) among multiple participating databases which are distributed among different physical locations. The isolation property (the I of ACID) poses a special challenge for multi database transactions, since the (global) serializability property could be violated, even if each database provides it (see also global serializability). In practice most commercial database systems use strong strict two phase locking (SS2PL) for concurrency control, which ensures global serializability, if all the participating databases employ it. (see also commitment ordering for multidatabases.) A common algorithm for ensuring correct completion of a distributed transaction is the two-phase commit (2PC). This algorithm is usually applied for updates able to commit in a short period of time, ranging from couple of milliseconds to couple of minutes. There are also long-lived distributed transactions, for example a transaction to book a trip, which consists of booking a flight, a rental car and a hotel. Since booking the flight might take up to a day to get a confirmation, two-phase commit is not applicable here, it will lock the resources for this long.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
CS-453: Concurrent computing
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
Afficher plus
Publications associées (97)
Concepts associés (10)
Database transaction
A database transaction symbolizes a unit of work, performed within a database management system (or similar system) against a database, that is treated in a coherent and reliable way independent of other transactions. A transaction generally represents any change in a database. Transactions in a database environment have two main purposes: To provide reliable units of work that allow correct recovery from failures and keep a database consistent even in cases of system failure.
Serializability
In concurrency control of databases, transaction processing (transaction management), and various transactional applications (e.g., transactional memory and software transactional memory), both centralized and distributed, a transaction schedule is serializable if its outcome (e.g., the resulting database state) is equal to the outcome of its transactions executed serially, i.e. without overlapping in time. Transactions are normally executed concurrently (they overlap), since this is the most efficient way.
Two-phase locking
In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the resulting set of database transaction schedules (histories). The protocol uses locks, applied by a transaction to data, which may block (interpreted as signals to stop) other transactions from accessing the same data during the transaction's life. By the 2PL protocol, locks are applied and removed in two phases: Expanding phase: locks are acquired and no locks are released.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.