The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axial ...
Nitrous oxide (N2O; ‘laughing gas’) is a powerful oxidant, but chemical transformations are hampered by the inert character of this gas. Recent advances in using N2O as an oxidant in metal-catalyzed reactions are discussed. The focus will be on reactions t ...
We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques ind ...
We consider the singular set in the thin obstacle problem with weight vertical bar x(n +1)vertical bar(a) for a epsilon (-1, 1), which arises as the local extension of the obstacle problem for the fractional Laplacian (a nonlocal problem). We develop a ref ...
A recursive max-linear vector models causal dependence between its components by expressing each node variable as a max-linear function of its parental nodes in a directed acyclic graph and some exogenous innovation. Motivated by extreme value theory, inno ...
We present a weak form implementation of the nonlinear axisymmetric shell equations. This implementation is suitable to study the nonlinear deformations of axisymmetric shells, with the capability of considering a general mid-surface shape, non-homogeneous ...
We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant ma ...
We consider the following class of fractional Schrodinger equations: (-Delta)(alpha)u + V(x)u = K(x)f(u) in R-N, where alpha is an element of (0, 1), N > 2 alpha, (-Delta)(alpha) is the fractional Laplacian, V and K are positive continuous functions which ...
Consider a random process s that is a solution of the stochastic differential equation Ls = w with L a homogeneous operator and w a multidimensional Levy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process ...
A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of ho ...