Couvre les techniques d'apprentissage par renforcement profond pour un contrôle continu, en se concentrant sur les méthodes d'optimisation des politiques proximales et leurs avantages par rapport aux approches de gradient de politique standard.
Explore le passage à l'apprentissage par renforcement profond à travers les réseaux neuronaux pour l'apprentissage direct des politiques, en contournant les valeurs Q et V.