Given a source of iid samples of edges of an input graph G with n vertices and m edges, how many samples does one need to compute a constant factor approximation to the maximum matching size in G? Moreover, is it possible to obtain such an estimate in a sm ...
This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between n nodes, with patterns that may change over time, the objective is to servi ...
Let c denote the largest constant such that every C-6-free graph G contains a bipartite and C-4-free subgraph having a fraction c of edges of G. Gyori, Kensell and Tompkins showed that 3/8
We introduce the analog of Kramers-Kronig dispersion relations for correlators of four scalar operators in an arbitrary conformal field theory. The correlator is expressed as an integral over its "absorptive part", defined as a double discontinuity, times ...
Given a graph F, a hypergraph is a Berge-F if it can be obtained by expanding each edge in F to a hyperedge containing it. A hypergraph H is Berge-F-saturated if H does not contain a subhypergraph that is a Berge-F, but for any edge e is an element of E((H ...
For a graph F, we say a hypergraph H is a Berge-F if it can be obtained from F by replacing each edge of F with a hyperedge containing it. We say a hypergraph is Berge-F-saturated if it does not contain a Berge-F, but adding any hyperedge creates a copy of ...
This thesis focuses on the maximum matching problem in modern computational settings where the algorithms have to make decisions with partial information.First, we consider two stochastic models called query-commit and price-of-information where the algo ...
This paper examines the binning of two types of parts with random characteristics, so that a componentwise monotonic evaluation criterion exhibits a minimum deviation to a given target value over all possible realizations. The optimal matching classes are ...