Explore les défis des études observationnelles, en soulignant l'importance de la randomisation et de l'analyse de sensibilité pour tirer des conclusions valables à partir de «données trouvées».
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Explore le processus de réfutation de la séance de cours académique, en mettant l'accent sur l'analyse des données pour l'acceptation du papier, l'apprentissage automatique et les tests statistiques.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Couvre la méthode de l'élément fini statistique, en mettant l'accent sur la construction d'une mesure préalable, en traitant des erreurs de spécification des modèles et en combinant les données des capteurs avec les modèles FEM.