No-deleting theoremIn physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed to the no-cloning theorem, which states that arbitrary states cannot be copied. This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust. Physicist Arun K. Pati along with Samuel L.
No-communication theoremIn physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light.
No-hiding theoremThe no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely.
No-teleportation theoremIn quantum information theory, the no-teleportation theorem states that an arbitrary quantum state cannot be converted into a sequence of classical bits (or even an infinite number of such bits); nor can such bits be used to reconstruct the original state, thus "teleporting" it by merely moving classical bits around. Put another way, it states that the unit of quantum information, the qubit, cannot be exactly, precisely converted into classical information bits.
Impossibilité du clonage quantiqueLe théorème d'impossibilité du clonage quantique est un résultat de mécanique quantique qui interdit la copie à l'identique d'un état quantique inconnu et arbitraire. Il a été énoncé en 1982 par Wootters, Zurek, et Dieks. Ce théorème a d'importantes conséquences en informatique quantique. Par exemple, il fait en sorte qu'il est impossible d'adapter un code quantique directement du code de répétition de la théorie des codes classique. Ceci rend la tâche d'élaborer un code quantique difficile par rapport aux codes classiques.