Le moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
En physique ou en mathématique, on définit comme conditions initiales les éléments nécessaires à la détermination de la solution complète et si possible unique d'un problème, éléments qui décrivent l'état du système à l'instant initial, c'est-à-dire l'état de départ. Plus formellement, on appelle « condition initiale » l'espace d'état d'un système étudié à l'instant initial. C'est ce qui permet de déterminer les coefficients des solutions des équations différentielles, par exemple les équations de mouvement des corps.
vignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
En physique, le pendule est un système oscillant qui, écarté de sa position d'équilibre, y retourne en décrivant des oscillations, sous l'effet d'une force, par exemple le poids d'une masse. Le mot pendule (nom masculin), dû à Huygens, vient du latin pendere. Le pendule de Foucault est l'un des plus connus. Par ailleurs, le mot « pendule » est souvent utilisé en synonyme de « pendule simple », même si son mouvement n'est plus « pendulaire » (on parle ainsi de pendule conique).
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
La résonance est un phénomène selon lequel certains systèmes physiques (électriques, mécaniques) sont sensibles à certaines fréquences. Un système résonant peut accumuler une énergie, si celle-ci est appliquée sous forme périodique, et proche d'une fréquence dite « fréquence de résonance ». Soumis à une telle excitation, le système va être le siège d'oscillations de plus en plus importantes, jusqu'à atteindre un régime d'équilibre qui dépend des éléments dissipatifs du système, ou bien jusqu'à une rupture d'un composant du système.
Une oscillation est un mouvement ou une fluctuation périodique autour d'une position d'équilibre stable. Les oscillations sont soit régulières (périodiques) soit décroissantes (amorties). Elles répondent aux mêmes équations quel que soit le domaine. Une oscillation est une "variation d'une grandeur mécanique, électrique, caractérisée par un changement périodique de sens". Le cycle d'une oscillation est le temps écoulé entre deux passages successifs par la position d'équilibre.
La théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.