In physics, the term swampland refers to effective low-energy physical theories which are not compatible with quantum gravity. This is in contrast with the so-called "string theory landscape" that are known to be compatible with string theory, which is believed to be a consistent quantum theory of gravity. In other words, the Swampland is the set of consistent-looking theories with no consistent ultraviolet completion with the addition of gravity.
Developments in string theory also suggest that the string theory landscape of false vacua is vast, so it is natural to ask if the landscape is as vast as allowed by anomaly-free effective field theories. The Swampland program aims to delineate the theories of quantum gravity by identifying the universal principles shared among all theories compatible with gravitational UV completion. The program was initiated by Cumrun Vafa who argued that string theory suggests that the Swampland is in fact much larger than the string theory landscape.
Quantum gravity differs from quantum field theory in several key ways, including locality and UV/IR decoupling. In quantum gravity, a local structure of observables is emergent rather than fundamental. A concrete example of the emergence of locality is AdS/CFT, where the local quantum field theory description in bulk is only an approximation that emerges within certain limits of the theory. Moreover, in quantum gravity, it is believed that different spacetime topologies can contribute to the gravitational path integral, which suggests that spacetime emerges due to one saddle being more dominant. Moreover, in quantum gravity, UV and IR are closely related. This connection is manifested in black hole thermodynamics, where a semiclassical IR theory calculates the black hole entropy, which captures the density of gravitational UV states known as black holes. In addition to general arguments based on black hole physics, developments in string theory also suggests that there are universal principles shared among all the theories in the string landscape.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En physique fondamentale, la théorie des cordes est un cadre théorique dans lequel les particules ponctuelles de la physique des particules sont représentées par des objets unidimensionnels appelés cordes. La théorie décrit comment ces cordes se propagent dans l'espace et interagissent les unes avec les autres. Sur des échelles de distance supérieures à l'échelle de la corde, cette dernière ressemble à une particule ordinaire, avec ses propriétés de masse, de charge et autres, déterminées par l'état vibratoire de la corde.
La gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
We study two-point functions of local operators and their spectral representation in UV complete quantum field theories in generic dimensions focusing on conserved currents and the stress-tensor. We establish the connection with the central charges of the ...
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes are ide ...
Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show ...