Cantellated 24-cellsIn four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 24-cell. There are 2 unique degrees of cantellations of the 24-cell including permutations with truncations. The cantellated 24-cell or small rhombated icositetrachoron is a uniform 4-polytope. The boundary of the cantellated 24-cell is composed of 24 truncated octahedral cells, 24 cuboctahedral cells and 96 triangular prisms.
Uniform polytopeIn geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.
Runcinated tesseractsIn four-dimensional geometry, a runcinated tesseract (or runcinated 16-cell) is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular tesseract. There are 4 variations of runcinations of the tesseract including with permutations truncations and cantellations. The runcinated tesseract or (small) disprismatotesseractihexadecachoron has 16 tetrahedra, 32 cubes, and 32 triangular prisms. Each vertex is shared by 4 cubes, 3 triangular prisms and one tetrahedron.
Cantellated tesseractIn four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular tesseract. There are four degrees of cantellations of the tesseract including with permutations truncations. Two are also derived from the 24-cell family. The cantellated tesseract, bicantellated 16-cell, or small rhombated tesseract is a convex uniform 4-polytope or 4-dimensional polytope bounded by 56 cells: 8 small rhombicuboctahedra, 16 octahedra, and 32 triangular prisms.
Prisme triangulaireEn géométrie, un prisme triangulaire ou prisme à trois côtés est un polyèdre fait à partir d'une base triangulaire, une copie translatée et 3 faces joignant les côtés correspondants. Si les côtés sont des carrés, il est qualifié de polyèdre uniforme. D'une manière équivalente, c'est un pentaèdre dont deux faces sont parallèles, tandis que les normales aux surfaces des trois autres sont dans le même plan (qui n'est pas nécessairement parallèle aux plans des bases). Ces trois faces sont des parallélogrammes.
Goursat tetrahedronIn geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere. A Goursat tetrahedron can be represented graphically by a tetrahedral graph, which is in a dual configuration of the fundamental domain tetrahedron.
Snub (geometry)In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Snub 24-cellIn geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.
4-polytope uniformethumb|upright=1.5|alt=Représentation du 120-cellules rectifié selon son diagramme de Schlegel|Diagramme de Schlegel du 120-cellules rectifié. Un 4-polytope uniforme est, en géométrie, un 4-polytope isogonal dont les cellules sont des polyèdres uniformes. Il s'agit de l'équivalent de ces derniers en dimension 4.
Truncated 24-cellsIn geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. The truncated 24-cell or truncated icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 truncated octahedra. Each vertex joins three truncated octahedra and one cube, in an equilateral triangular pyramid vertex figure.