Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are many variations on this basic theme, and the definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined (multiple cores on one die, multiple dies in one package, multiple packages in one system unit, etc.).
According to some on-line dictionaries, a multiprocessor is a computer system having two or more processing units (multiple processors) each sharing main memory and peripherals, in order to simultaneously process programs. A 2009 textbook defined multiprocessor system similarly, but noting that the processors may share "some or all of the system’s memory and I/O facilities"; it also gave tightly coupled system as a synonymous term.
At the operating system level, multiprocessing is sometimes used to refer to the execution of multiple concurrent processes in a system, with each process running on a separate CPU or core, as opposed to a single process at any one instant. When used with this definition, multiprocessing is sometimes contrasted with multitasking, which may use just a single processor but switch it in time slices between tasks (i.e. a time-sharing system). Multiprocessing however means true parallel execution of multiple processes using more than one processor. Multiprocessing doesn't necessarily mean that a single process or task uses more than one processor simultaneously; the term parallel processing is generally used to denote that scenario. Other authors prefer to refer to the operating system techniques as multiprogramming and reserve the term multiprocessing for the hardware aspect of having more than one processor. The remainder of this article discusses multiprocessing only in this hardware sense.
In Flynn's taxonomy, multiprocessors as defined above are MIMD machines.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Hardware compilation is the process of transforming specialized hardware description languages into circuit descriptions, which are iteratively refined, detailed and optimized. The course presents a
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
Course no longer offered for new students; this edition is only a make-up course for those who repeated the year. Please log in with EPFL credentials and consult the mediaspace link below for course v
vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
En informatique, un système NUMA (pour non uniform memory access ou non uniform memory architecture, signifiant respectivement accès mémoire non uniforme et architecture mémoire non uniforme) est un système multiprocesseur dans lequel les zones mémoire sont séparées et placées en différents endroits (et sur différents bus). Vis-à-vis de chaque processeur, les temps d'accès diffèrent donc suivant la zone mémoire accédée.
Un multiprocesseur symétrique (à mémoire partagée), ou symmetric shared memory multiprocessor (SMP), est une architecture parallèle qui consiste à multiplier les processeurs identiques au sein d'un ordinateur, de manière à augmenter la puissance de calcul, tout en conservant une unique mémoire. Disposer de plusieurs processeurs permet d'exécuter simultanément plusieurs processus du système, utilisateur ou noyau en leur allouant l'un ou l'autre des processeurs disponibles, ce qui augmente la fluidité lors de l'exécution de plusieurs programmes, et permet à un processus d'utiliser plus de ressources de calcul en créant plusieurs threads.
Explore Multi Masters Systems, en discutant des architectures avec plusieurs processeurs, mémoire partagée, exclusion mutuelle et accélérateurs matériels.
Couvre le passage aux processeurs multicœurs, à l'architecture de mémoire de processeur, aux défis de concurrence et aux problèmes de synchronisation dans l'informatique moderne.
Data-intensive systems are the backbone of today's computing and are responsible for shaping data centers. Over the years, cloud providers have relied on three principles to maintain cost-effective data systems: use disaggregation to decouple scaling, use ...
Nontrivial spectral properties of non-Hermitian systems can lead to intriguing effects with no counterparts in Hermitian systems. For instance, in a two-mode photonic system, by dynamically winding around an exceptional point (EP) a controlled asymmetric-s ...
NATURE PORTFOLIO2023
, , ,
Machine learning algorithms such as Convolutional Neural Networks (CNNs) are characterized by high robustness towards quantization, supporting small-bitwidth fixed-point arithmetic at inference time with little to no degradation in accuracy. In turn, small ...