Concept

Distinguished space

In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Suppose that is a locally convex space and let and denote the strong dual of (that is, the continuous dual space of endowed with the strong dual topology). Let denote the continuous dual space of and let denote the strong dual of Let denote endowed with the weak-* topology induced by where this topology is denoted by (that is, the topology of pointwise convergence on ). We say that a subset of is -bounded if it is a bounded subset of and we call the closure of in the TVS the -closure of . If is a subset of then the polar of is A Hausdorff locally convex space is called a distinguished space if it satisfies any of the following equivalent conditions: If is a -bounded subset of then there exists a bounded subset of whose -closure contains . If is a -bounded subset of then there exists a bounded subset of such that is contained in which is the polar (relative to the duality ) of The strong dual of is a barrelled space. If in addition is a metrizable locally convex topological vector space then this list may be extended to include: (Grothendieck) The strong dual of is a bornological space. All normed spaces and semi-reflexive spaces are distinguished spaces. LF spaces are distinguished spaces. The strong dual space of a Fréchet space is distinguished if and only if is quasibarrelled. Every locally convex distinguished space is an H-space. There exist distinguished Banach spaces spaces that are not semi-reflexive. The strong dual of a distinguished Banach space is not necessarily separable; is such a space. The strong dual space of a distinguished Fréchet space is not necessarily metrizable. There exists a distinguished semi-reflexive non-reflexive -quasibarrelled Mackey space whose strong dual is a non-reflexive Banach space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.