Concepts associés (16)
Théorie des cordes topologiques
En physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Dualité de cordes
En théorie des cordes ou des supercordes on appelle dualité une équivalence physique entre deux modèles construits a priori de façon différente. Par exemple comme on va le voir plus bas, la théorie des cordes bosonique à 26 dimensions compactifiée sur un cercle de rayon est équivalente à la même théorie bosonique mais compactifiée cette fois sur un cercle de rayon . Cette dualité porte le nom de dualité T.
D-brane
En théorie des cordes, une D-brane est une brane sur laquelle sont fixées les extrémités des cordes ouvertes qui sont à l'origine de la matière qu'elle contient. Le D de D-brane, vient de Dirichlet, car le fait que les bouts de la corde ne peuvent sortir de la brane s'appelle la condition de Dirichlet. Selon ce modèle, les propriétés d'une corde (mode vibratoire, taille ; particule engendrée) sont uniquement caractérisées par ses extrémités et les bouts d'une corde ne peuvent sortir de la D-brane sur lesquels ils se trouvent.
Compactification (physics)
In theoretical physics, compactification means changing a theory with respect to one of its space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, and may also be periodic. Compactification plays an important part in thermal field theory where one compactifies time, in string theory where one compactifies the extra dimensions of the theory, and in two- or one-dimensional solid state physics, where one considers a system which is limited in one of the three usual spatial dimensions.
Géométrie complexe
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Théorie de Hodge
La théorie de Hodge est l'étude, avec l'apport notamment de la topologie algébrique, des formes différentielles sur une variété lisse. En conséquence elle éclaire l'étude des variétés riemanniennes et kählériennes, ainsi que l'étude géométrique des motifs. Elle tient son nom du mathématicien écossais William Hodge. Un des problèmes du prix du millénaire a trait à cette théorie : la conjecture de Hodge.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.