Concept

Équant

Résumé
vignette|upright=1.5|Trajectoire d'une planète supérieure dans le modèle de Ptolémée avec utilisation d'un déférent excentré, d'un épicycle et du point équant L'équant est un dispositif mathématique probablement introduit par Ptolémée pour rendre compte du mouvement des planètes dans le cadre de son modèle géocentrique du système solaire. Il déroge au principe en vigueur chez les astronomes anciens du mouvement circulaire uniforme : en effet la vitesse angulaire n'est plus constante vis-à-vis du centre du cercle mais vis-à-vis d'un point distinct de celui-ci, le point équant (en latin : punctum aequans) . Son introduction n'est pas tant liée au géocentrisme qu'à l'utilisation de mouvements circulaires pour rendre compte des mouvements des corps célestes, ce qui restera la norme jusqu'à Kepler. En effet, si Copernic n'utilise pas de point équant pour son modèle héliocentrique, mais un autre dispositif à base de mouvements circulaires uniformes dans le strict respect de la tradition, Kepler lui-même, lorsqu'il entame la longue recherche de la trajectoire de Mars qui le conduira à la découverte du mouvement elliptique des planètes, commence par réintroduire le point équant de Ptolémée dans le système de Copernic. Le substantif masculin « équant » est issu du latin la, participe présent du verbe transitif la (« rendre égal »). Dans le cadre des premiers systèmes géocentriques le Soleil était censé décrire une orbite circulaire centrée sur la Terre, mais les astronomes anciens se sont rendu compte que le Soleil ne se déplaçait pas à vitesse uniforme dans les différents signes du zodiaque, d'où le nom d'anomalie ou inégalité zodiacale attribué à ce comportement. Cette anomalie se manifeste également par l'inégalité entre les longueurs des saisons, ce qu'ils avaient également remarqué. Nous savons depuis Kepler que l'orbite apparente du Soleil est elliptique, que la Terre est un foyer de cette ellipse, et que le mouvement angulaire n'est pas uniforme, mais suit la loi des aires.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.