Concept

Quadric (algebraic geometry)

In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface in projective space over the complex numbers C. A quadric has a natural action of the orthogonal group, and so the study of quadrics can be considered as a descendant of Euclidean geometry. Many properties of quadrics hold more generally for projective homogeneous varieties. Another generalization of quadrics is provided by Fano varieties. By definition, a quadric X of dimension n over a field k is the subspace of defined by q = 0, where q is a nonzero homogeneous polynomial of degree 2 over k in variables . (A homogeneous polynomial is also called a form, and so q may be called a quadratic form.) If q is the product of two linear forms, then X is the union of two hyperplanes. It is common to assume that and q is irreducible, which excludes that special case. Here algebraic varieties over a field k are considered as a special class of schemes over k. When k is algebraically closed, one can also think of a projective variety in a more elementary way, as a subset of defined by homogeneous polynomial equations with coefficients in k. If q can be written (after some linear change of coordinates) as a polynomial in a proper subset of the variables, then X is the projective cone over a lower-dimensional quadric. It is reasonable to focus attention on the case where X is not a cone. For k of characteristic not 2, X is not a cone if and only if X is smooth over k. When k has characteristic not 2, smoothness of a quadric is also equivalent to the Hessian matrix of q having nonzero determinant, or to the associated bilinear form b(x,y) = q(x+y) – q(x) – q(y) being nondegenerate. In general, for k of characteristic not 2, the rank of a quadric means the rank of the Hessian matrix.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.