Mohamed FarhatM. Farhat was born in Casablanca in 1962 (Moroccan citizen). He graduated at Ecole Nationale Supérieure d'Hydraulique et de Mécanique de Grenoble (France. He joined The LMH laboratory in 1986 as research assistant. He completed in 1994 a Ph.D. thesis on Cavitation. He joined the R&D department of Hydro-Quebec in Montréal (Canada) in 1995 where he was in charge of several research projects in the areas of production and transportation of hydropower and mainly the monitoring of large hydro turbines. Since 2001, he is senior scientist at the LMH laboratory, head of the cavitation group. He is also lecturer in Master and Doctoral programs. He is member of the Doctoral Committee in Mechanics.
Ronan BoulicI come from Brittany, France, where I have completed my PhD degree in Computer Science in 1986 from the University of Rennes, France, at the INRIA-IRISA research institute. I also received the Habilitation degree from the University of Grenoble, France, in march 1995. I was hired in 1989 as First Assistant in the VRLAB, I became scientific collaborator, and senior researcher. I'm presently Senior Scientist (MER) and leader of the Immersive Interaction research Group (IIG). I'm co-author of around 150 research papers among which 43 appeared in international peer-reviewed journals. I have contributed to multiple SNF projects and EU projects. Please check iig.epfl.ch for more details.
Karl AbererCo-Founder of LinkAlong Sarl, 2017.Vice-president EPFL for Information Systems, 2012 –2016.Director of the Swiss National Centre for Mobile Information and Communication Systems NCCR MICS (mics.ch), 2005 -2012.Member of the Swiss Research and Technology Council SWTR, consulting the Swiss Federal government, 2004 - 2011.
Pierre-Yves GilliéronOriginaire de Mézières (Vaud), né en 1964, Pierre-Yves Gilliéron obtient un diplôme dingénieur en génie rural et géomètre à lEcole polytechnique fédérale de Lausanne (EPFL) en 1988.
De 1988 à 1990, il travaille au laboratoire de photogrammétrie de lEPFL où il participe à un projet de recherche en traitement dimage avec le partenaire industriel LEICA.
De 1991 à 1997, il est engagé par un bureau dingénieurs du Valais où il est actif dans le domaine de la géomatique. Responsable du secteur de la photogrammétrie, il dirige des mandats tant en Suisse quà létranger.
En 1997, il rejoint lEPFL et il est nommé chargé de cours pour le positionnement par satellite et la topographie. Parallèlement, Il collabore à la recherche et au développement au sein du laboratoire de Topométrie (TOPO) dans le domaine des systèmes de navigation appliqués aux transports.
Dès 2018, il occupe le poste d'adjoint à la direction de la section en sciences en ingénierie de l'environnement (SIE) de l'EPFL.
--
Il a été membre du comité de lInstitut Suisse de Navigation (ION-CH), de la commission géodésique suisse (SCNAT/SGK), de commissions d'experts de la VSS, du comité its-ch et de diverses associations professionnelles (IGSO, geosuisse, SSPIT).
Jérôme ZuffereyDiplôme d'Architecture à l'EPFL en 1995. Certificat Eur'IC (European Informatics Conference) en 1997. Brevet Fédéral de Formateur d'Adultes en 2006. Bureau d'informaticien, formateur et architecte indépendant depuis 1997. Travaux d'installation, support, conseil et formation auprès d'entreprises. Travaux d'infographie auprès de bureaux d'architectures et d'entreprises (relevés d'usines, plans techniques, modélisations, photomontages, plaquettes de concours, ...) Domaines d'intérêts spécifiques: L'informatique dans son histoire et son évolution (premiers pas avec un Apple ][ en 1981), l'infographie dans sa multiplicité d'outils et sa problématique vis à vis de la représentation architecturale, la pédagogie dans sa constante remise en question qu'elle implique, la vie sociale et politique (Conseiller communal à Bex, 2002-2008). Dès 1999, assistant chez Monsieur le Professeur Georges Abou Jaoudé (LIV, cours d'informatique pour les étudiants en architecture de deuxième année avec Monsieur Michel Herezen, chargé de cours jusqu'en 2010). Aujourd'hui Informaticien ENAC-IT3 et Chargé de cours ENAC-SAR.
Pierre DillenbourgAncien instituteur primaire, Pierre Dillenbourg obtient un master en Sciences de lEducation (Université de Mons, Belgique). Dans son projet de master en 1986, il est l'un des premiers au monde à appliquer les méthodes de 'machine learning' à l'éducation, afin de développer un 'self-improving teaching system'. Ceci lui permettra de débuter une thèse de doctorat en informatique à l'Université de Lancaster (UK) dans le domaine des applications éducatives de lintelligence artificielle. Il a été Maître dEnseignement et de Recherche à lUniversité de Genève. Il rejoint l'EPFL en 2012, où Il fut le directeur du Centre de Recherche sur l'Apprentissage, la formation et ses technologies(CRAFT), puis académique du Centre pour l'Education à l'Ere Digitale (CEDE) qui met en oeuvre la stratégie MOOC de l'EPFL (plus de 2 millions d'inscriptions). Il est actuellement professeur ordinaire en technologies de formation aux sein de la faculté Informatique et Communications et dirige laboratoire d'ergonomie éducative (CHILI). Depuis 2006, il a aussi été le directeur de DUAL-T, la 'leading house' dédiée aux technologies pour les systèmes de formation professionnelle duale. Il a fondé plusieurs start-ups dans l'éducation et rejoint plusieurs conseils d'administration. En 2017, Il a créé avec des collègues le 'Swiss EdTech Collider', un incubateur qui rassemble 80 start-ups dans le domaine des technologies éducatives. En 2018, ils ont lancé LEARN, le centre EPFL pour les sciences de l'apprentissage, lequel regroupe les initiatives locales en innovation éducative. Pierre est un 'inaugural fellow of the International Society of Learning Sciences'. Il est actuellement le Vice-Président Associé pour l'Education à l'EPFL.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.