P/polyEn informatique théorique, plus précisément en théorie de la complexité, P/poly est la classe de problèmes de décision décidés par une famille de circuits booléens de tailles polynomiales. Cette classe a été introduite par Karp et Lipton en 1980. Cette classe est importante, car comme P est incluse dans P/poly, si on démontre que NP ⊈ P/poly, alors on résout le problème ouvert P est différent de NP. Il y a deux définitions équivalentes, la première donnée avec le modèle de calcul des circuits booléens, l'autre avec des machines de Turing.
Système de preuve interactivevignette|504x504px|Un système de preuve interactive est composé de deux machines abstraites : un prouveur et un vérificateur qui s'échangent des messages. En théorie de la complexité des algorithmes, un système de preuve interactive est un protocole formel de démonstration de théorèmes qui fait intervenir deux participants qui échangent des messages. Cela permet de définir des classes de complexité intéressantes, notamment la classe IP qui est le modèle utilisé dans le théorème PCP qui caractérise la classe NP.
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].