Endre Szemerédi (, ), né le à Budapest, est un mathématicien hongrois, spécialisé dans la recherche en analyse combinatoire. Il est lauréat du prix Abel en 2012.
Endre Szemerédi commence ses études en faculté de médecine, qu'il interrompt au bout d'un an après avoir suivi les cours de Pál Turán sur la théorie des nombres. Il s'inscrit plus tard en mathématiques et obtient son master de sciences à l'université Loránd Eötvös en 1965 , puis son doctorat à l'université d'État de Moscou sous la direction d’Israel Gelfand en 1970.
Membre de l'Académie hongroise des sciences depuis 1987, Endre Szemerédi est spécialiste des mathématiques dites discrètes. Il est chercheur à l'Institut de recherches mathématiques Alfréd Rényi de l'académie, il enseigne également l'informatique à l'université Rutgers dans le New Jersey.
Endre Szemerédi est surtout connu pour avoir démontré en 1975 une conjecture d'Erdős et Turán : si une suite d'entiers naturels possède une densité asymptotique supérieure positive alors, pour tout k, elle contient une suite arithmétique de longueur k. C'est le théorème de Szemerédi.
Il a beaucoup publié avec Erdős, dont le théorème d'Erdős-Szemerédi.
Il est aussi l'auteur de plusieurs théorèmes en théorie des graphes, dont le théorème de Hajnal-Szemerédi qui affirme qu'on peut colorier de façon équitable un graphe de degré maximal Δ en utilisant Δ + 1 couleurs. Le lemme de régularité de Szemerédi qui porte sur la structure des grands graphes est un résultat utilisé en informatique théorique, notamment pour le test de propriété.
Le théorème de Szemerédi-Trotter est un résultat de géométrie combinatoire.
1973 : Prix Rényi de l'Académie hongroise des sciences
1975 : Prix Pólya de la London Mathematical Society.
2008 : Prix Leroy P.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements . En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes.
En théorie des graphes, le lemme de régularité de Szemerédi ou simplement lemme de régularité, est un résultat de partitionnement de graphe. Il exprime qu'un graphe assez grand peut toujours être découpé en un petit nombre de morceaux de telle sorte que les arêtes entre ces morceaux se comportent de façon très régulière. Soit G un graphe non orienté, X et Y deux sous-ensembles de sommets (non nécessairement disjoints). La densité du couple (X,Y) est la quantité suivante : où E(X,Y) désigne l'ensemble des arêtes reliant un sommet de X à un sommet de Y.
In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma. The graph removal lemma can be used to prove Roth's theorem on 3-term arithmetic progressions, and a generalization of it, the hypergraph removal lemma, can be used to prove Szemerédi's theorem. It also has applications to property testing.