vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements .
En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes. Un graphe à but informatif représenté avec peu de croisements facilite la compréhension de celui-ci.
L'étude du nombre de croisements trouve son origine dans le problème de l'usine de briques de Turán, dans lequel Pál Turán a demandé un plan d'usine qui minimiserait le nombre de croisements entre les voies reliant les fours à briques aux sites de stockage. Formellement, ce problème revient à trouver le nombre de croisements d'un graphe biparti complet. Le même problème s'est posé indépendamment en sociologie à peu près au même moment, en relation avec la construction de sociogrammes. La formule conjecturée de Turán pour les nombres de croisements de graphes bipartis complets reste à prouver, tout comme une formule analogue pour les graphes complets.
L' indique que, pour les graphes où le nombre e d'arêtes est suffisamment supérieur au nombre n de sommets, le nombre de croisements est au moins proportionnel à .
Sans autre précision, le nombre de croisements permet des dessins dans lesquels les arêtes peuvent être représentées par des courbes arbitraires. Une variante de ce concept, le nombre de croisements rectilignes, exige que toutes les arêtes soient des segments et est donc supérieur ou égal au nombre de croisements. En particulier, le nombre de croisements rectilignes d'un graphe complet est le nombre minimum de quadrilatères convexes déterminé par un ensemble de n points. Le problème de la détermination de ce nombre est étroitement lié au Happy Ending problem.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán, who formulated it while being forced to work in a brick factory during World War II. A drawing method found by Kazimierz Zarankiewicz has been conjectured to give the correct answer for every complete bipartite graph, and the statement that this is true has come to be known as the Zarankiewicz crossing number conjecture.
En mathématiques, et plus précisément en théorie des graphes, le graphe de Nauru est un graphe 3-régulier possédant 24 sommets et 36 arêtes. Il a été nommé ainsi par David Eppstein d'après l'étoile à 12 branches ornant le drapeau de Nauru. Le diamètre du graphe de Nauru, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 6.
Pál Turán, né le à Budapest et décédé le , est un mathématicien hongrois connu comme l'auteur du théorème de Turán. Son nombre d'Erdős est 1. Il était l'époux de Vera Sós Turán, mathématicienne elle aussi. Théorème d'Erdős-Kac Histoire de la fonction zêta de Riemann Université Loránd Eötvös Prix Kossuth Théorème de Szemerédi Conjecture d'Erdős-Turán sur les bases additives Inégalité d'Erdős-Turán Graphe de Turán Catégorie:Naissance à Budapest Catégorie:Naissance en août 1910 Catégorie:Naissance dans le roya
Explore les algorithmes de Prim et Kruskal pour trouver un minimum d'arbres couvrants dans un graphique, couvrant leur exactitude, leur mise en œuvre et leur analyse.
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi and Leighton, the nu ...
A straight-line drawing of a graph G is a mapping which assigns to each vertex a point in the plane and to each edge a straight-line segment connecting the corresponding two points. The rectilinear crossing number of a graph G, (cr) over bar (G), is the mi ...
We show that any set of n points in general position in the plane determines n(1-o(1)) pairwise crossing segments. The best previously known lower bound, Omega(root n), was proved more than 25 years ago by Aronov, Erdos, Goddard, Kreitman, Krugerman, Pach, ...