Pavage de Penrosevignette|Un pavage de Penrose|alt= vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt= Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.
Rhombille tilingIn geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets of six rhombi meet at their 60° angles. The rhombille tiling can be seen as a subdivision of a hexagonal tiling with each hexagon divided into three rhombi meeting at the center point of the hexagon.
Rhombic enneacontahedronIn geometry, a rhombic enneacontahedron (plural: rhombic enneacontahedra) is a polyhedron composed of 90 rhombic faces; with three, five, or six rhombi meeting at each vertex. It has 60 broad rhombi and 30 slim. The rhombic enneacontahedron is a zonohedron with a superficial resemblance to the rhombic triacontahedron. It can also be seen as a nonuniform truncated icosahedron with pyramids augmented to the pentagonal and hexagonal faces with heights adjusted until the dihedral angles are zero, and the two pyramid type side edges are equal length.
Rhombic hexecontahedronIn geometry, a rhombic hexecontahedron is a stellation of the rhombic triacontahedron. It is nonconvex with 60 golden rhombic faces with icosahedral symmetry. It was described mathematically in 1940 by Helmut Unkelbach. It is topologically identical to the convex deltoidal hexecontahedron which has kite faces. The rhombic hexecontahedron can be dissected into 20 acute golden rhombohedra meeting at a central point. This gives the volume of a hexecontahedron of side length a to be and the area to be .
Hexaki-icosaèdreUn hexaki-icosaèdre est un polyèdre à 120 faces, qui sont des triangles scalènes. Il est parfois appelé hexakis icosaèdre, hexa-icosaèdre ou, plus rarement, disdyakis triacontaèdre (par imitation de l'anglais). Le préfixe hexaki-, d'origine grecque, signifie « 6 fois » et fait référence au nombre de faces : 6 fois les 20 faces de l'icosaèdre. L'hexaki-icosaèdre régulier est un solide de Catalan, puisqu'il est le dual de l'icosidodécaèdre tronqué, solide d'Archimède.