Concept

Antimatroid

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts. The axioms defining antimatroids as set systems are very similar to those of matroids, but whereas matroids are defined by an exchange axiom, antimatroids are defined instead by an anti-exchange axiom, from which their name derives. Antimatroids can be viewed as a special case of greedoids and of semimodular lattices, and as a generalization of partial orders and of distributive lattices. Antimatroids are equivalent, by complementation, to convex geometries, a combinatorial abstraction of convex sets in geometry. Antimatroids have been applied to model precedence constraints in scheduling problems, potential event sequences in simulations, task planning in artificial intelligence, and the states of knowledge of human learners. An antimatroid can be defined as a finite family of finite sets, called feasible sets, with the following two properties: The union of any two feasible sets is also feasible. That is, is closed under unions. If is a nonempty feasible set, then contains an element for which (the set formed by removing from ) is also feasible. That is, is an accessible set system. Antimatroids also have an equivalent definition as a formal language, that is, as a set of strings defined from a finite alphabet of symbols. A string that belongs to this set is called a word of the language. A language defining an antimatroid must satisfy the following properties: Every symbol of the alphabet occurs in at least one word of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (2)
Optimisation convexe: descente de gradient
Explore la dimension VC, la descente de gradient, les ensembles convexes et les fonctions Lipschitz en optimisation convexe.
Convex Polyhedra et programmes linéaires
Explore polyèdre convexe, programmes linéaires, et leur importance d'optimisation.
Publications associées (8)

Seamless integration of design and Kirchhoff-Love shell analysis using analysis-suitable unstructured T-splines

Xiaodong Wei, Deepesh Toshniwal

Analysis-suitable T-splines (ASTS) including both extraordinary points and T-junctions are used to solve Kirchhoff-Love shell problems. Extraordinary points are required to represent surfaces with arbitrary topological genus. T-junctions enable local refin ...
ELSEVIER SCIENCE SA2020

Avoidance of Convex and Concave Obstacles with Convergence ensured through Contraction

Aude Billard, Lukas Huber

This paper presents a closed-form approach to obstacle avoidance for multiple moving convex and star-shaped concave obstacles. The method takes inspiration in harmonic-potential fields. It inherits the convergence properties of harmonic potentials. We prov ...
2019

Learning Generalized Nash Equilibria in a Class of Convex Games

Maryam Kamgarpour

We consider multiagent decision making where each agent optimizes its convex cost function subject to individual and coupling constraints. The constraint sets are compact convex subsets of a Euclidean space. To learn Nash equilibria, we propose a novel dis ...
2019
Afficher plus
Concepts associés (8)
Birkhoff's representation theorem
This is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation). In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders.
Closure operator
In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets {| border="0" |- | | (cl is extensive), |- | | (cl is increasing), |- | | (cl is idempotent). |} Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families".
Family of sets
In set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.