Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper demonstrates how to recover causal graphs from the score of the data distribution in non-linear additive (Gaussian) noise models. Using score matching algorithms as a building block, we show how to design a new generation of scalable causal disc ...
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...
Testing mutual independence among several random vectors of arbitrary dimensions is a challenging problem in Statistics, and it has gained considerable interest in recent years. In this article, we propose some nonparametric tests based on different notion ...
We use quasi-random access to the Home Affordable Refinance Program (HARP) to identify the causal effect of refinancing into a lower-rate mortgage on borrower balance sheet outcomes. Refinancing substantially reduces borrower default rates on mortgages and ...
Observational studies reporting on adjusted associations between childhood body mass index (BMI; weight (kg)/height (m)(2)) rebound and subsequent cardiometabolic outcomes have often not paid explicit attention to causal inference, including definition of ...
This research explores the unreasoned influences of locational behaviour – i.e. locational habits – in Activity- Travel-Behaviour (ATB). In particular, the interrelations between Activity Space characteristics and mobility patterns. In a wider research eff ...
Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This ...
Objective. Stereo-electroencephalography (SEEG) has recently gained importance in analyzing brain functions. Its high temporal resolution and spatial specificity make it a powerful tool to investigate the strength, direction, and spectral content of brain ...
In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute to thi ...
As a basic and effective tool for explanation, prediction and decision making, causal relationships have been utilized in almost all disciplines. Traditionally, causal relationships are identified by making use of interventions or randomized controlled exp ...