Résumé
In electronics, rapid single flux quantum (RSFQ) is a digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage pulses. RSFQ is one family of superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ – energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing, technology. RSFQ is very different from the CMOS transistor technology used in conventional computers: Superconducting devices require cryogenic temperatures. picosecond-duration SFQ voltage pulses produced by Josephson junctions are used to encode, process, and transport digital information instead of the voltage levels produced by transistors in semiconductor electronics. SFQ voltage pulses travel on superconducting transmission lines which have very small, and usually negligible, dispersion if no spectral component of the pulse is above the frequency of the energy gap of the superconductor. In the case of SFQ pulses of 1 ps, it is possible to clock the circuits at frequencies of the order of 100 GHz (one pulse every 10 picoseconds). An SFQ pulse is produced when magnetic flux through a superconducting loop containing a Josephson junction changes by one flux quantum, Φ0 as a result of the junction switching. SFQ pulses have a quantized area ʃV(t)dt = Φ0 ≈ 2.07e-15Wb = 2.07 mV⋅ps = 2.07 mA⋅pH due to magnetic flux quantization, a fundamental property of superconductors. Depending on the parameters of the Josephson junctions, the pulses can be as narrow as 1 ps with an amplitude of about 2 mV, or broader (e.g., 5–10 ps) with correspondingly lower amplitude. The typical value of the pulse amplitude is approximately 2IcRn, where IcRn is the product of the junction critical current, Ic, and the junction damping resistor, Rn.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-419: Solid state physics III
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
PHYS-464: Solid state systems for quantum information
This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizi
MSE-438: Superconducting electronics: A materials perspective
Introduction to superconducting electronic applications and their material requirements, including the fundamental phenomenology of superconductors. Key applications and their material requirements: a
Séances de cours associées (19)
Effet Josephson
Explique l'effet Josephson et l'importance de la jonction Josephson dans la technologie supraconductrice.
Josephson Junctions: Théorie et applications
Explore les jonctions de Josephson, couvrant la théorie, la fabrication et les applications pratiques dans l'électronique supraconductrice.
Qubits supraconducteurs : histoire et théorie du BCS
Explore l'histoire des qubits supraconducteurs et les fondamentaux de la supraconductivité et de la théorie BCS.
Afficher plus
Publications associées (16)
Personnes associées (1)
Concepts associés (1)
Supraconducteur à haute température
Un supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.