Cours associés (29)
MATH-101(de): Analysis I (German)
Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.
MATH-203(c): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
CS-421: Machine learning for behavioral data
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
MATH-602: Inference on graphs
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MGT-529: Data science and machine learning II
This class discusses advanced data science and machine learning (ML) topics: Recommender Systems, Graph Analytics, and Deep Learning, Big Data, Data Clouds, APIs, Clustering. The course uses the Wol
ENV-521: Multivariate statistics with R in environment
Introduction to multivariate data analysis and modelling. The course helps for a critical choice of methods and their integration in a research planning. It prepares for complexe data analysis in vari
PHYS-815: 7th Machine learning in HEP Summer School
The school will cover the relatively young area of data analysis and computational research that has started to emerge in High Energy Physics (HEP). It is known by several names including "Multivariat
CS-434: Unsupervised & reinforcement learning in neural networks
Learning is observable in animal and human behavior, but learning is also a topic of computer science. This course links algorithms from machine learning with biological phenomena of synaptic plastic

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.