Cours associés (32)
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
PHYS-642: Statistical physics for optimization & learning
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
ENV-513: Multivariate statistics in R
Data required for ecosystem assessment is typically multidimensional. Multivariate statistical tools allow us to summarize and model multiple ecological parameters. This course provides a conceptual i
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
CS-421: Machine learning for behavioral data
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
MGT-502: Data science and machine learning
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.