Restricted randomizationIn statistics, restricted randomization occurs in the design of experiments and in particular in the context of randomized experiments and randomized controlled trials. Restricted randomization allows intuitively poor allocations of treatments to experimental units to be avoided, while retaining the theoretical benefits of randomization. For example, in a clinical trial of a new proposed treatment of obesity compared to a control, an experimenter would want to avoid outcomes of the randomization in which the new treatment was allocated only to the heaviest patients.
Fixed effects modelIn statistics, a fixed effects model is a statistical model in which the model parameters are fixed or non-random quantities. This is in contrast to random effects models and mixed models in which all or some of the model parameters are random variables. In many applications including econometrics and biostatistics a fixed effects model refers to a regression model in which the group means are fixed (non-random) as opposed to a random effects model in which the group means are a random sample from a population.
Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Nonlinear mixed-effects modelNonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.