Concept

Spirale d'Ulam

Résumé
En mathématiques, la spirale d'Ulam, ou spirale des nombres premiers (dans d'autres langues, elle est appelée aussi horloge d'Ulam) est une méthode simple pour la représentation des nombres premiers qui révèle un motif qui n'a jamais été pleinement expliqué. Elle fut découverte par le mathématicien Stanislaw Ulam (connu notamment pour ses travaux sur la bombe H), lors d'une conférence scientifique en 1963. Ulam se trouva coincé, contraint d'écouter « un exposé très long et très ennuyeux ». Il passa son temps à crayonner et se mit à gribouiller des entiers consécutifs, commençant par 1 au centre, dans une espèce de spirale tournant dans le sens inverse des aiguilles d'une montre. Il obtint une grille régulière de nombres, démarrant par un 1 au centre, et spiralant vers l'extérieur comme ceci : Puis, il entoura tous les nombres premiers, il obtint alors l'image suivante : À sa surprise, les nombres entourés tendaient à s'aligner le long de lignes diagonales. L'image suivante illustre ce fait. C'est une spirale d'Ulam de 200 × 200, où les nombres premiers sont noirs. Les diagonales noires sont clairement visibles. redresse=1.4|centré|vignette|Petite spirale d'Ulam. De retour à son poste de travail, il développe manuellement sur quelques centaines de points la spirale. Puis avec ses collaborateurs du Los Alamos Scientific Laboratory, Myron Stein et Mark Wells, il développe sur Maniac II son calcul jusqu'à points. Ils impriment quelques développements pour les photographier. En mars 1964, Martin Gardner publie dans la chronique Mathematical Games du magazine Scientific American le développement de la spirale d'Ulam avec quelques photos prises par Ulam et ses collaborateurs. La spirale figure sur la couverture de ce numéro. Dans ses colonnes, Gardner y fait un parallèle avec le triangle de Klauber. Il apparaît des lignes diagonales comportant une quantité de nombres tracés. Ceci semble rester vrai, même si le nombre central du départ est plus grand que 1.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.