Concept

Effects of climate change on the water cycle

The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle (also called hydrologic cycle). This effect has been observed since at least 1980. One example is the intensification of heavy precipitation events. This has important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, atmosphere and land surface. The water cycle is essential to life on Earth and plays a large role in the global climate and the ocean circulation. The warming of our planet is expected to cause changes in the water cycle for various reasons. For example, warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall. The underlying cause of the intensifying water cycle is the increased amount of greenhouse gases, which lead to a warmer atmosphere through the greenhouse effect. Physics dictates that saturation vapor pressure increases by 7% when temperature rises by 1 °C (as described in the Clausius-Clapeyron equation). The strength of the water cycle and its changes over time are of considerable interest, especially as the climate changes. The essence of the overall hydrological cycle is the evaporation of moisture in one place and the precipitation in other places. In particular, evaporation exceeds precipitation over the oceans, which allows moisture to be transported by the atmosphere from the oceans onto land where precipitation exceeds evapotranspiration, and the runoff flows into streams and rivers and discharges into the ocean, completing the cycle. The water cycle is a key part of Earth's energy cycle through the evaporative cooling at the surface which provides latent heat to the atmosphere, as atmospheric systems play a primary role in moving heat upward. If water is available, extra heat goes mostly into evaporation, as it always does on the oceans, otherwise it goes into raising air temperature.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
ENV-800: Ecohydrology: From field data to process modeling
Ecohydrology investigates the effects of hydrological processes on ecosystems, as well as in turn the effects of biotic processes on the water cycle. The Summer School will focus on three aspects of e
CIVIL-466: Water resources management
Water is one of the fundamental earth resources that sustains all life forms. Despite being abundant as chemical compound, its accessibility and use depend on its physical status and quality. The anal
ENV-221: Hydrology for engineers
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
Afficher plus
Concepts associés (8)
Eau douce
L'eau douce est une eau dont la salinité est très faible ou inexistante, par opposition à l'eau de mer et à l'eau saumâtre. C'est l'eau de pluie, l'eau des rivières, des lacs, des nappes phréatiques, des glaciers, des tourbières Sa très faible salinité permet sa consommation. C'est un critère de potabilité essentiel. Une eau douce contient généralement moins d'un gramme de matières solides dissoutes (comme les sels, métaux et éléments nutritifs) par litre.
Atlantic meridional overturning circulation
The Atlantic meridional overturning circulation (AMOC) is part of a global thermohaline circulation in the oceans and is the zonally integrated component of surface and deep currents in the Atlantic Ocean. It is characterized by a northward flow of warm, salty water in the upper layers of the Atlantic, and a southward flow of colder, deep waters. These "limbs" are linked by regions of overturning in the Nordic and Labrador Seas and the Southern Ocean, although the extent of overturning in the Labrador Sea is disputed.
Water security
The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water (drought and water scarcity) or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production".
Afficher plus