In convex geometry, a body of constant brightness is a three-dimensional convex set all of whose two-dimensional projections have equal area. A sphere is a body of constant brightness, but others exist. Bodies of constant brightness are a generalization of curves of constant width, but are not the same as another generalization, the surfaces of constant width.
The name comes from interpreting the body as a shining body with isotropic luminance, then a photo (with focus at infinity) of the body taken from any angle would have the same total light energy hitting the photo.
A body has constant brightness if and only if the reciprocal Gaussian curvatures at pairs of opposite points of tangency of parallel supporting planes have almost-everywhere-equal sums.
According to an analogue of Barbier's theorem, all bodies of constant brightness that have the same projected area as each other also have the same surface area, . This can be proved by the Crofton formula.
The first known body of constant brightness that is not a sphere was constructed by Wilhelm Blaschke in 1915. Its boundary is a surface of revolution of a curved triangle (but not the Reuleaux triangle). It is smooth except on a circle and at one isolated point where it is crossed by the axis of revolution. The circle separates two patches of different geometry from each other: one of these two patches is a spherical cap, and the other forms part of a football, a surface of constant Gaussian curvature with a pointed tip. Pairs of parallel supporting planes to this body have one plane tangent to a singular point (with reciprocal curvature zero) and the other tangent to the one of these two patches, which both have the same curvature. Among bodies of revolution of constant brightness, Blaschke's shape (also called the Blaschke–Firey body) is the one with minimum volume, and the sphere is the one with maximum volume.
Additional examples can be obtained by combining multiple bodies of constant brightness using the Blaschke sum, an operation on convex bodies that preserves the property of having constant brightness.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Triangle de Reuleaux Un triangle de Reuleaux est une courbe de largeur constante, c'est-à-dire une courbe dont tous les diamètres ont la même longueur. Dans ce cas un diamètre correspond au segment formé par un sommet et n'importe quel point du côté opposé (qui est un arc de cercle dans ce cas). Cette courbe tient son nom de l'ingénieur allemand Franz Reuleaux, qui fut au un pionnier du génie mécanique. La forme du triangle de Reuleaux a été utilisée au treizième siècle pour certaines rosaces gothiques.
vignette|upright=2|Ce cercle et ces polygones de Reuleaux ont tous la même largeur (constante); par conséquent, selon le théorème de Barbier, ils ont aussi même périmètre. En géométrie, le théorème de Barbier énonce que toute courbe de largeur constante, comme le cercle, a un périmètre égal à π fois sa largeur, quelle que soit sa forme précise. Ce théorème a d'abord été publié par Joseph-Émile Barbier en 1860. Les exemples les plus connus de courbes de largeur constante sont le cercle et le triangle de Reuleaux.