Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Explore la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets dans l'analyse de texte à l'aide de modèles d'apprentissage supervisé et de sacs de mots.
Introduit les bases de la détection de bord, y compris la mesure du contraste, les images de gradient, l'interprétation de Fourier, les fonctions gaussiennes, le détecteur de bord Canny et les applications industrielles.