We provide a self-consistent extension of the Lorentz reciprocity theorem and the Poynting theorem for media possessing electric and magnetic dipolar and quadrupolar responses related to electric and magnetic fields and field gradients thus corresponding t ...
By means of ab initio band structure methods and model Hamiltonians we investigate the electronic, spin and topological properties of four monopnictides crystallizing in bct structure. We show that the Weyl bands around a WP W1 or W2 possess a strong aniso ...
A family of effective equations for wave propagation in periodic media for arbitrary timescales O(epsilon-alpha), where epsilon MUCH LESS-THAN1 is the period of the tensor describing the medium, is proposed. The well-posedness of the effective equations of ...
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...
To realize spin wave logic gates, programmable phase inverters are essential. We image using phase-resolved Brillouin light scattering microscopy propagating spin waves in a one-dimensional magnonic crystal consisting of dipolarly coupled magnetic nanostri ...
Visual motion discrimination involves reciprocal interactions in the alpha band between the primary visual cortex (V1) and mediotemporal areas (V5/MT). We investigated whether modulating alpha phase synchronization using individualized multisite transcrani ...
In chronic disorders such as Parkinson’s disease (PD), fear of falling (FOF) is associated with falls and reduced quality of life. With inertial measurement units (IMUs) and dedicated algorithms, different aspects of mobility can be obtained during supervi ...