Concept

Coupole (géométrie)

Résumé
En géométrie, une coupole est un solide formé en joignant deux polygones, un (la base) avec deux fois autant d'arêtes que l'autre, par une bande alternée de triangles et de rectangles. Si les triangles sont équilatéraux et les rectangles sont carrés, et que la base et sa face opposée sont des polygones réguliers, alors la coupole est dite « régulière ». Les coupoles hexagonales, octogonales et décagonales sont des solides de Johnson, et peuvent être formées en prenant des sections du cuboctaèdre, du petit rhombicuboctaèdre et du petit rhombicosidodécaèdre, respectivement. La hauteur d'une coupole 2n-gonale est égale à la hauteur d'une pyramide n-gonale (cette règle est aussi vraie pour les cas extrêmes du prisme triangulaire et de la coupole dodécagonale). Une coupole peut être vue comme un prisme où un des polygones a été effondré par la moitié en fusionnant des sommets alternés. Les coupoles sont une sous-classe des prismatoïdes. Les trois polyèdres mentionnés ci-dessus sont les seules coupoles non-triviales avec des faces régulières : la « coupole dodécagonale » est une figure plane, et le prisme triangulaire peut être considéré comme une « coupole » de degré 2 (la coupole d'un segment et d'un carré). Néanmoins, les coupoles de polygones de degrés plus élevés peuvent être construites avec des faces triangulaires et rectangulaires irrégulières. La définition d'une coupole ne requiert pas que la base soit un polygone régulier (ou le côté opposé à la base, qui peut être appelé le haut), mais il est pratique de considérer le cas où la coupole possède sa symétrie maximale, Cnv. Dans ce cas, le haut est un n-gone régulier, alors que la base est soit un 2n-gone régulier ou un 2n-gone qui possède deux longueurs de côtés différentes alternant et les mêmes angles qu'un 2n-gone régulier. Il est pratique de fixer le système de coordonnée tel que la base soit placée dans le plan xy, avec le haut dans un plan parallèle au plan xy. L'axe z est l'axe des n-feuillets, et les plans miroir passent à travers l'axe z et partagent les côtés de la base.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.