Concepts associés (4)
Fonction récursive primitive
En théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Fonction récursive
En informatique et en mathématiques, le terme fonction récursive ou fonction calculable désigne la classe de fonctions dont les valeurs peuvent être calculées à partir de leurs paramètres par un processus mécanique fini. En fait, cela fait référence à deux concepts liés, mais distincts. En théorie de la calculabilité, la classe des fonctions récursives est une classe plus générale que celle des fonctions récursives primitives, mais plus restreinte que celle des fonctions semi-calculables (ou partielles récursives).
Constructivisme (mathématiques)
En philosophie des mathématiques, le constructivisme est une position vis-à-vis des mathématiques qui considère que l'on ne peut effectivement démontrer l'existence d'objets mathématiques qu'en donnant une construction de ceux-ci, une suite d'opérations mentales qui conduit à l'évidence de l'existence de ces objets. En particulier, les constructivistes ne considèrent pas que le raisonnement par l'absurde est universellement valide, une preuve d'existence par l'absurde (c-à-d une preuve où la non-existence entraîne une contradiction) ne conduisant pas en soi à une construction de l'objet.
Théorie de la calculabilité
La théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est un domaine de la logique mathématique et de l'informatique théorique. La calculabilité (parfois appelée « computationnalité », de l'anglais computability) cherche d'une part à identifier la classe des fonctions qui peuvent être calculées à l'aide d'un algorithme et d'autre part à appliquer ces concepts à des questions fondamentales des mathématiques. Une bonne appréhension de ce qui est calculable et de ce qui ne l'est pas permet de voir les limites des problèmes que peuvent résoudre les ordinateurs.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.