Résumé
The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = n kB T) to the magnetic pressure (pmag = B2/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs. In the fusion power field, plasma is often confined using strong magnets. Since the temperature of the fuel scales with pressure, reactors attempt to reach the highest pressures possible. The costs of large magnets roughly scales like β1⁄2. Therefore, beta can be thought of as a ratio of money out to money in for a reactor, and beta can be thought of (very approximately) as an economic indicator of reactor efficiency. For tokamaks, betas of larger than 0.05 or 5% are desired for economically viable electrical production. The same term is also used when discussing the interactions of the solar wind with various magnetic fields. For example, beta in the corona of the Sun is about 0.01. Nuclear fusion occurs when the nuclei of two atoms approach closely enough for the nuclear force to pull them together into a single larger nucleus. The strong force is opposed by the electrostatic force created by the positive charge of the nuclei's protons, pushing the nuclei apart. The amount of energy that is needed to overcome this repulsion is known as the Coulomb barrier. The amount of energy released by the fusion reaction when it occurs may be greater or less than the Coulomb barrier. Generally, lighter nuclei with a smaller number of protons and greater number of neutrons will have the greatest ratio of energy released to energy required, and the majority of fusion power research focusses on the use of deuterium and tritium, two isotopes of hydrogen. Even using these isotopes, the Coulomb barrier is large enough that the nuclei must be given great amounts of energy before they will fuse. Although there are a number of ways to do this, the simplest is to heat the gas mixture, which, according to the Maxwell–Boltzmann distribution, will result in a small number of particles with the required energy even when the gas as a whole is relatively "cool" compared to the Coulomb barrier energy.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-632: Fusion and industrial plasma technologies
The course provides an overview of the technologies that are essential for fusion developments and for industrial plasma applications, highlighting the synergies between the two fields. The aim is to
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
PHYS-734: Control and Operation of Tokamaks
This course treats the main issues in operation and control of a tokamak. Control-oriented models are derived and controllers are designed using techniques from modern control theory. Operational limi
Séances de cours associées (33)
Micro-instabilités : Drift Wave et ITG
Explore les instabilités des ondes de dérive et des ITG dans les dispositifs de fusion, en analysant les relations de dispersion et les taux de croissance.
Instabilités plasmatiques : Interaction des trois ondes résonantes
Explore le couplage résonant de trois ondulations, en se concentrant sur le scatter Raman stimulé dans le plasma et le développement d'instabilités paramétriques affectant la lumière laser.
Introduction à la physique du plasma
Couvre les régimes de haute confinement, la densité de courant induite, le soutien autonome du plasma de fusion et les conditions idéales de MHD.
Afficher plus
Publications associées (472)
Concepts associés (8)
Tokamak sphérique
thumb|Intérieur d'un tokamak sphérique. Un tokamak sphérique est un dispositif de confinement magnétique de plasma de type tokamak permettant d'obtenir des réactions de fusions de nucléons. Un tokamak sphérique a un solénoïde central beaucoup plus fin qu'un tokamak classique. Une telle installation serait susceptible d'être utilisée pour produire de l'électricité.
Field-reversed configuration
A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring. FRCs are closely related to another self-stable magnetic confinement fusion device, the spheromak. Both are considered part of the compact toroid class of fusion devices.
Pinch (plasma physics)
A pinch (or: Bennett pinch (after Willard Harrison Bennett), electromagnetic pinch, magnetic pinch, pinch effect, or plasma pinch.) is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power. Pinches occur naturally in electrical discharges such as lightning bolts, planetary auroras, current sheets, and solar flares.
Afficher plus
MOOCs associés (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus