En probabilité et en statistiques, une loi de mélange est la loi de probabilité d'une variable aléatoire s'obtenant à partir d'une famille de variables aléatoires de la manière suivante : une variable aléatoire est choisie au hasard parmi la famille de variables aléatoires donnée, puis la valeur de la variable aléatoire sélectionnée est réalisée. Les variables aléatoires sous-jacentes peuvent être des nombres réels aléatoires, ou des vecteurs aléatoires (chacun ayant la même dimension), auquel cas la répartition du mélange est une répartition à plusieurs variables.
Dans les cas où chacune des variables aléatoires sous-jacente est continue, la variable finale sera également continue et sa fonction de densité de probabilité est parfois appelée densité de mélange. La fonction de répartition (et la densité de probabilité si elle existe) peut être exprimée sous forme d'une combinaison convexe (par exemple une somme pondérée, avec des probabilités positives dont la somme est 1) d'autres fonctions de loi et de fonctions de densité. Les répartitions individuelles qui sont combinées pour former la loi du mélange sont appelées les composants du mélange, et les probabilités associées à chaque composant sont appelées les probabilités du mélange. Le nombre de composants dans la loi de mélange est souvent limitée, bien que dans certains cas, les composants peuvent être indénombrables.
Une distinction doit être faite entre une variable aléatoire dont la loi est une somme pondérée de composants, et une variable qui s'écrit comme la somme de variables aléatoires, auquel cas sa loi est donnée par le produit de convolution des lois des variables sommées. À titre d'exemple, la somme de deux variables aléatoires conjointement normalement distribuées, chacun avec des moyennes différentes, aura toujours une loi normale. D'un autre côté, une densité de mélange conçue comme un mélange de deux lois normales, avec des moyennes différentes, aura deux pics à condition que les deux moyennes soient assez éloignées, ce qui montre que cette loi est radicalement différente d'une loi normale.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Couvre les distributions conditionnelles et les corrélations dans les statistiques multivariées, y compris la variance partielle et la covariance, avec les applications aux distributions non normales.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
We experimentally investigate fluctuations in the spectrum of ultrashort laser pulses propagating in air, close to the critical power for filamentation. Increasing the laser peak power broadens the spectrum while the beam approaches the filamentation regim ...
We use generalized Ray-Knight theorems, introduced by B. Toth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled sel ...