Nitrifying bacteria are chemolithotrophic organisms that include species of genera such as Nitrosomonas, Nitrosococcus, Nitrobacter, Nitrospina, Nitrospira and Nitrococcus. These bacteria get their energy from the oxidation of inorganic nitrogen compounds. Types include ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Many species of nitrifying bacteria have complex internal membrane systems that are the location for key enzymes in nitrification: ammonia monooxygenase (which oxidizes ammonia to hydroxylamine), hydroxylamine oxidoreductase (which oxidizes hydroxylamine to nitric oxide - which is further oxidized to nitrite by a currently unidentified enzyme), and nitrite oxidoreductase (which oxidizes nitrite to nitrate). Nitrifying bacteria are present in distinct taxonomical groups and are found in highest numbers where considerable amounts of ammonia are present (such as areas with extensive protein decomposition, and sewage treatment plants). Nitrifying bacteria thrive in lakes, streams, and rivers with high inputs and outputs of sewage, wastewater and freshwater because of the high ammonia content. Nitrification in nature is a two-step oxidation process of ammonium () or ammonia () to nitrite () and then to nitrate () catalyzed by two ubiquitous bacterial groups growing together. The first reaction is oxidation of ammonium to nitrite by ammonia oxidizing bacteria (AOB) represented by members of Betaproteobacteria and Gammaproteobacteria. Further organisms able to oxidize ammonia are Archaea (AOA). The second reaction is oxidation of nitrite () to nitrate by nitrite-oxidizing bacteria (NOB), represented by the members of Nitrospinota, Nitrospirota, Pseudomonadota, and Chloroflexota. This two-step process was described already in 1890 by the Ukrainian microbiologist Sergei Winogradsky. Ammonia can be also oxidized completely to nitrate by one comammox bacterium. Ammonia oxidation in autotrophic nitrification is a complex process that requires several enzymes as well as oxygen as a reactant.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (35)
Concepts associés (7)
Archaea
Les archées () ou Archaea (du grec ancien , « originel, primitif »), anciennement appelés archéobactéries, sont des microorganismes unicellulaires procaryotes, c'est-à-dire des êtres vivants constitués d'une cellule unique qui ne comprend ni noyau ni organites, à l'instar des bactéries. D'apparence souvent semblable à ces dernières, les archées ont longtemps été considérées comme des bactéries extrêmophiles particulières, jusqu'à ce que les recherches phylogénétiques sur les procaryotes, commencées en 1965, aboutissent, avec les travaux de Carl Woese et George E.
Nitrification
thumb|350px|Diagramme montrant le cycle de l'azote. La nitrification est le processus biologique par lequel les nitrates sont produits dans l'environnement. Celle-ci se fait en deux étapes distinctes, chacune sous l'action de micro-organismes différents. Étape 1 : l'ammoniaque est oxydé en nitrite, c'est la nitrosation (réaction par des bactéries du genre Nitrosomonas, , ), appelée également nitritation. Étape 2 : le nitrite est oxydé en nitrate, c'est la nitratation (réaction par des bactéries du genre Nitrobacter, Nitrococcus, Nitrospira).
Comammox
Comammox (COMplete AMMonia OXidation) is the name attributed to an organism that can convert ammonia into nitrite and then into nitrate through the process of nitrification. Nitrification has traditionally thought to be a two-step process, where ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and then nitrite-oxidizing bacteria convert to nitrate. Complete conversion of ammonia into nitrate by a single microorganism was first predicted in 2006.
Afficher plus
MOOCs associés (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.